Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36233893

ABSTRACT

The paper presents the results of an investigation of the influence of technological parameters on the microstructure, optical, electrical and nanomechanical properties of zinc oxide coatings prepared using the pulsed reactive magnetron sputtering method. Three sets of ZnOx thin films were deposited in metallic, shallow dielectric and deep dielectric sputtering modes. Structural investigations showed that thin films deposited in the metallic mode were nanocrystalline with mixed hexagonal phases of metallic zinc and zinc oxide with crystallite size of 9.1 and 6.0 nm, respectively. On the contrary, the coatings deposited in both dielectric modes had a nanocrystalline ZnO structure with an average crystallite size smaller than 10 nm. Moreover, coatings deposited in the dielectric modes had an average transmission of 84% in the visible wavelength range, while thin films deposited in the metallic mode were opaque. Measurements of electrical properties revealed that the resistivity of as-deposited thin films was in the range of 10-4 Ωcm to 108 Ωcm. Coatings deposited in the metallic mode had the lowest hardness of 2.2 GPa and the worst scratch resistance among all sputtered coatings, whereas the best mechanical properties were obtained for the film sputtered in the deep dielectric mode. The obtained hardness of 11.5 GPa is one of the highest reported to date in the literature for undoped ZnO.

2.
Materials (Basel) ; 15(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079207

ABSTRACT

The application of nano-Ag grains as antiviral and antibacterial materials is widely known since ancient times. The problem is the toxicity of the bulk or big-size grain materials. It is known that nano-sized silver grains affect human and animal cells in some medical treatments. The aim of this study is to investigate the influence of nano-Ag grains embedded in a carbonaceous matrix on cytotoxicity, genotoxicity in fibroblasts, and mutagenicity. The nanocomposite film is composed of silver nanograins embedded in a carbonaceous matrix and it was obtained via the PVD method by deposition from two separated sources of fullerenes and silver acetate powders. This method allows for the preparation of material in the form of a film or powder, in which Ag nanograins are stabilized by a carbon network. The structure and morphology of this material were studied using SEM/EDX, XRD, and Raman spectroscopy. The toxicology studies were performed for various types of the material differing in the size of Ag nanograins. Furthermore, it was found that these properties, such as cell viability, genotoxicity, and mutagenicity, depend on Ag grain size.

3.
Sensors (Basel) ; 20(21)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114774

ABSTRACT

Damages of different kinds that can be inflicted to a parked car. Among them, loosening of the car wheel bolts is difficult to detect during normal use of the car and is at the same time very dangerous to the health and life of the driver. Moreover, in patents and publications, only little information is presented about electronic sensors available for activation from inside of the car to inform the driver about the mentioned dangerous situation. Thus, the main aim of this work is the proposition and examination of a sensing device using of a wireless accelerometer head to detect loosening of wheel fixing bolts before ride has been started. The proposed sensing device consists of a wireless accelerometer head, an assembly interface and a receiver unit. The assembly interface between the head and the inner part of the rim enables the correct operation of the system. The data processing algorithm developed for the receiver unit enables the proper detection of the unscrewing of bolts. Moreover, the tested algorithm is resistant to the interference signals generated in the accelerometer head by cars and men passing in close distance.

4.
Sensors (Basel) ; 10(4): 3771-97, 2010.
Article in English | MEDLINE | ID: mdl-22319325

ABSTRACT

This paper presents a review, based on the published literature and on the authors' own research, of the current state of the art of fiber-optic capillary sensors and related instrumentation as well as their applications, with special emphasis on point-of-care chemical and biochemical sensors, systematizing the various types of sensors from the point of view of the principles of their construction and operation. Unlike classical fiber-optic sensors which rely on changes in light propagation inside the fiber as affected by outside conditions, optical capillary sensors rely on changes of light transmission in capillaries filled with the analyzed liquid, which opens the possibility of interesting new applications, while raising specific issues relating to the construction, materials and instrumentation of those sensors.


Subject(s)
Biosensing Techniques/methods , Fiber Optic Technology/instrumentation , Microfluidics/instrumentation , Optical Fibers , Point-of-Care Systems , Biosensing Techniques/instrumentation , Capillaries/metabolism , Fiber Optic Technology/methods , Humans , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...