Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
2.
Ann Biomed Eng ; 52(6): 1665-1677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459196

ABSTRACT

Prosthetic heart valve (PHV) replacement has increased the survival rate and quality of life for heart valve-diseased patients. However, PHV thrombosis remains a critical problem associated with these procedures. To better understand the PHV flow-related thrombosis problem, appropriate experimental models need to be developed. In this study, we present an in vitro fibrin clot model that mimics clot accumulation in PHVs under relevant hydrodynamic conditions while allowing real-time imaging. We created 3D-printed mechanical aortic valve models that were inserted into a transparent glass aorta model and connected to a system that simulates human aortic flow pulse and pressures. Thrombin was gradually injected into a circulating fibrinogen solution to induce fibrin clot formation, and clot accumulation was quantified via image analysis. The results of valves positioned in a normal versus a tilted configuration showed that clot accumulation correlated with the local flow features and was mainly present in areas of low shear and high residence time, where recirculating flows are dominant, as supported by computational fluid dynamic simulations. Overall, our work suggests that the developed method may provide data on flow-related clot accumulation in PHVs and may contribute to exploring new approaches and valve designs to reduce valve thrombosis.


Subject(s)
Fibrin , Heart Valve Prosthesis , Thrombin , Thrombosis , Humans , Fibrin/metabolism , Models, Cardiovascular , Perfusion , Aortic Valve/surgery
3.
Sci Rep ; 13(1): 23069, 2023 12 27.
Article in English | MEDLINE | ID: mdl-38155187

ABSTRACT

Large amounts of net electrical charge are known to accumulate on inhaled aerosols during their generation using commonly-available inhalers. This effect often leads to superfluous deposition in the extra-thoracic airways at the cost of more efficient inhalation therapy. Since the electrostatic force is inversely proportional to the square of the distance between an aerosol and the airway wall, its role has long been recognized as potentially significant in the deep lungs. Yet, with the complexity of exploring such phenomenon directly at the acinar scales, in vitro experiments have been largely limited to upper airways models. Here, we devise a microfluidic alveolated airway channel coated with conductive material to quantify in vitro the significance of electrostatic effects on inhaled aerosol deposition. Specifically, our aerosol exposure assays showcase inhaled spherical particles of 0.2, 0.5, and 1.1 µm that are recognized to reach the acinar regions, whereby deposition is typically attributed to the leading roles of diffusion and sedimentation. In our experiments, electrostatic effects are observed to largely prevent aerosols from depositing inside alveolar cavities. Rather, deposition is overwhelmingly biased along the inter-alveolar septal spaces, even when aerosols are charged with only a few elementary charges. Our observations give new insight into the role of electrostatics at the acinar scales and emphasize how charged particles under 2 µm may rapidly overshadow the traditionally accepted dominance of diffusion or sedimentation when considering aerosol deposition phenomena in the deep lungs.


Subject(s)
Models, Biological , Pulmonary Alveoli , Static Electricity , Particle Size , Computer Simulation , Aerosols , Lung , Administration, Inhalation
5.
Pharmaceutics ; 15(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986764

ABSTRACT

Subglottic stenosis represents a challenging clinical condition in otolaryngology. Although patients often experience improvement following endoscopic surgery, recurrence rates remain high. Pursuing measures to maintain surgical results and prevent recurrence is thus necessary. Steroids therapy is considered effective in preventing restenosis. Currently, however, the ability of trans-oral steroid inhalation to reach and affect the stenotic subglottic area in a tracheotomized patient is largely negligible. In the present study, we describe a novel trans-tracheostomal retrograde inhalation technique to increase corticosteroid deposition in the subglottic area. We detail our preliminary clinical outcomes in four patients treated with trans-tracheostomal corticosteroid inhalation via a metered dose inhaler (MDI) following surgery. Concurrently, we leverage computational fluid-particle dynamics (CFPD) simulations in an extra-thoracic 3D airway model to gain insight on possible advantages of such a technique over traditional trans-oral inhalation in augmenting aerosol deposition in the stenotic subglottic region. Our numerical simulations show that for an arbitrary inhaled dose (aerosols spanning 1-12 µm), the deposition (mass) fraction in the subglottis is over 30 times higher in the retrograde trans-tracheostomal technique compared to the trans-oral inhalation technique (3.63% vs. 0.11%). Importantly, while a major portion of inhaled aerosols (66.43%) in the trans-oral inhalation maneuver are transported distally past the trachea, the vast majority of aerosols (85.10%) exit through the mouth during trans-tracheostomal inhalation, thereby avoiding undesired deposition in the broader lungs. Overall, the proposed trans-tracheostomal retrograde inhalation technique increases aerosol deposition rates in the subglottis with minor lower-airway deposition compared to the trans-oral inhalation technique. This novel technique could play an important role in preventing restenosis of the subglottis.

6.
PLoS Comput Biol ; 19(3): e1010537, 2023 03.
Article in English | MEDLINE | ID: mdl-36952557

ABSTRACT

There exists an ongoing need to improve the validity and accuracy of computational fluid dynamics (CFD) simulations of turbulent airflows in the extra-thoracic and upper airways. Yet, a knowledge gap remains in providing experimentally-resolved 3D flow benchmarks with sufficient data density and completeness for useful comparison with widely-employed numerical schemes. Motivated by such shortcomings, the present work details to the best of our knowledge the first attempt to deliver in vitro-in silico correlations of 3D respiratory airflows in a generalized mouth-throat model and thereby assess the performance of Large Eddy Simulations (LES) and Reynolds-Averaged Numerical Simulations (RANS). Numerical predictions are compared against 3D volumetric flow measurements using Tomographic Particle Image Velocimetry (TPIV) at three steady inhalation flowrates varying from shallow to deep inhalation conditions. We find that a RANS k-ω SST model adequately predicts velocity flow patterns for Reynolds numbers spanning 1'500 to 7'000, supporting results in close proximity to a more computationally-expensive LES model. Yet, RANS significantly underestimates turbulent kinetic energy (TKE), thus underlining the advantages of LES as a higher-order turbulence modeling scheme. In an effort to bridge future endevours across respiratory research disciplines, we provide end users with the present in vitro-in silico correlation data for improved predictive CFD models towards inhalation therapy and therapeutic or toxic dosimetry endpoints.


Subject(s)
Mouth , Pharynx , Computer Simulation , Rheology
7.
Eur J Pharm Sci ; 181: 106359, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36521723

ABSTRACT

The applicability of inhalation therapy to some severe pulmonary conditions is often compromised by limited delivery rates (i.e. total dose) and low deposition efficiencies in the respiratory tract, most notably in the deep pulmonary acinar airways. To circumvent such limitations, alternative therapeutic techniques have relied for instance on intratracheal liquid instillations for the delivery of high-dose therapies. Yet, a longstanding mechanistic challenge with such latter methods lies in delivering solutions homogeneously across the whole lungs, despite an inherent tendency of non-uniform spreading driven mainly by gravitational effects. Here, we hypothesize that the pulmonary distribution of instilled liquid solutions can be meaningfully improved by foaming the solution prior to its instillation, owing to the increased volume and the reduced gravitational bias of foams. As a proof-of-concept, we show in excised adult porcine lungs that liquid foams can lead to significant improvement in homogenous pulmonary distributions compared with traditional liquid instillations. Our ex-vivo results suggest that liquid foams can potentially offer an attractive novel pulmonary delivery modality with applications for high-dose regimens of respiratory therapeutics.


Subject(s)
Lung , Swine , Animals
8.
Front Bioeng Biotechnol ; 10: 905557, 2022.
Article in English | MEDLINE | ID: mdl-36017344

ABSTRACT

Recent advances in the field of cell therapy have proposed new solutions for tissue repair and regeneration using various cell delivery approaches. Here we studied ex vivo a novel topical delivery system of encapsulated cells in hybrid polyethylene glycol-fibrinogen (PEG-Fb) hydrogel microspheres to respiratory tract models. We investigated basic parameters of cell encapsulation, delivery and release in conditions of inflamed and damaged lungs of bacterial-infected mice. The establishment of each step in the study was essential for the proof of concept. We demonstrated co-encapsulation of alveolar macrophages and epithelial cells that were highly viable and equally distributed inside the microspheres. We found that encapsulated macrophages exposed to bacterial endotoxin lipopolysaccharide preserved high viability and secreted moderate levels of TNFα, whereas non-encapsulated cells exhibited a burst TNFα secretion and reduced viability. LPS-exposed encapsulated macrophages exhibited elongated morphology and out-migration capability from microspheres. Microsphere degradation and cell release in inflamed lung environment was studied ex vivo by the incubation of encapsulated macrophages with lung extracts derived from intranasally infected mice with Yersinia pestis, demonstrating the potential in cell targeting and release in inflamed lungs. Finally, we demonstrated microsphere delivery to a multi-component airways-on-chip platform that mimic human nasal, bronchial and alveolar airways in serially connected compartments. This study demonstrates the feasibility in using hydrogel microspheres as an effective method for topical cell delivery to the lungs in the context of pulmonary damage and the need for tissue repair.

9.
J Biomech ; 140: 111131, 2022 07.
Article in English | MEDLINE | ID: mdl-35653879

ABSTRACT

Treating diseased lung regions using inhalation therapy is often limited due to airway constrictions and obstructions that significantly reduce aerosol deposition efficiency. Intratracheal administration of liquid foams is a potential strategy to improve pulmonary drug delivery to these affected airway regions. Here, we use effective viscosity measurements and in vitro small-airway models to examine how shear thinning effects in the foam can be leveraged to achieve a more uniform distribution within heterogeneously constricted or partially obstructed airways. We find that a foamed solution based on the formulation of Tacholiquin® exhibited a 5.75-fold decrease in effective viscosity across a shear rate range spanning 970 to 14'500 s-1. As a result, the foam volume penetrating through the constricted airway models was up to 154% higher compared with air, depending on the cross-sectional area of the constrictions. This proof-of-concept study represents a first step towards understanding the transport mechanics of liquid foams towards future pulmonary delivery applications.


Subject(s)
Lung , Thorax , Aerosols , Drug Delivery Systems , Viscosity
10.
Bioeng Transl Med ; 7(2): e10271, 2022 May.
Article in English | MEDLINE | ID: mdl-35600654

ABSTRACT

Mortality rates among patients suffering from acute respiratory failure remain perplexingly high despite the maintenance of blood oxygen homeostasis during ventilatory support. The biotrauma hypothesis advocates that mechanical forces from invasive ventilation trigger immunological mediators that spread systemically. Yet, how these forces elicit an immune response remains unclear. Here, a biomimetic in vitro three-dimensional (3D) upper airways model allows to recapitulate lung injury and immune responses induced during invasive mechanical ventilation in neonates. Under such ventilatory support, flow-induced stresses injure the bronchial epithelium of the intubated airways model and directly modulate epithelial cell inflammatory cytokine secretion associated with pulmonary injury. Fluorescence microscopy and biochemical analyses reveal site-specific susceptibility to epithelial erosion in airways from jet-flow impaction and are linked to increases in cell apoptosis and modulated secretions of cytokines IL-6, -8, and -10. In an effort to mitigate the onset of biotrauma, prophylactic pharmacological treatment with Montelukast, a leukotriene receptor antagonist, reduces apoptosis and pro-inflammatory signaling during invasive ventilation of the in vitro model. This 3D airway platform points to a previously overlooked origin of lung injury and showcases translational opportunities in preclinical pulmonary research toward protective therapies and improved protocols for patient care.

11.
J Biomech ; 137: 111082, 2022 05.
Article in English | MEDLINE | ID: mdl-35489235

ABSTRACT

The journey of vascular targeted carriers (VTC) in the circulatory system is highly intricate and includes navigation through different vessel structures, such as the vast pulmonary capillary network (PCN) in the lungs where particles can get entrapped and lead to blockage. Here, we leverage microfluidic PCN models to explore, for the first time, micro-particle capillary entrapment, in a well-controlled biophysical environment mimicking human physiological hemodynamics at true scale. This in vitro strategy mimics the challenges of vascular carrier transport during their journey in the smallest capillaries of the body (∼5 µm). Specifically, we explore in the PCN model entrapment dynamics of spherical micro-particles of different diameters (i.e. 3, 4 and 4.5 µm) at different concentrations, comparing their motion in cell-free buffer to that in the presence of red blood cells (RBCs). Notably, while 3 µm particles exhibit undisturbed transport in all of the examined concentrations, both in cell-free buffer and in the presence of RBCs, particles of 4 and 4.5 µm exhibit a concentration-dependent transport where the presence of RBCs leads in fact to reduced entrapment. Our experiments suggest that collisions of micro-particles with RBCs can facilitate their navigability, allowing for carrier transport that would lead otherwise to rapid entrapment in a cell-free environment. Altogether, the proposed preclinical in vitro assays offer rapid screening opportunities for design optimization of VTC transport in capillary networks.


Subject(s)
Microfluidics , Humans , Capillaries/physiology , Erythrocytes/physiology , Hemodynamics
12.
Front Physiol ; 13: 853317, 2022.
Article in English | MEDLINE | ID: mdl-35350687

ABSTRACT

The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.

13.
Eur J Pharm Sci ; 173: 106172, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35351584

ABSTRACT

Despite the prevalence of inhalation therapy in the treatment of various respiratory diseases, predicting and optimizing lung deposition fractions of inhaled drugs for maximal efficacy remains challenging due to the complex anatomical structures of the extra-thoracic airways, notably the glottal region. One of the widespread speculations in current insilico simulations lies in assuming a static glottis during inhalation, while in reality inhalation leads to significant glottis cross-sectional area expansion. The present work attempts to explore, insilico, the influence of transient movement of the glottal structures on inhalation therapy outcomes. To this end, we adopted a CT-based realistic human tracheobronchial tree (TB) model and explored transient airflows and deposition outcomes for a broad range of inhaled aerosols (i.e., dp=1-12 µm) under a dry powder inhaler (DPI) maneuver. Three different glottal expansion ratios, spanning static to 40 percent cross-sectional area expansion have been considered for the analysis. Our findings point to the tangible impact of glottal motion on airflow and particle deposition along the respiratory tract for a DPI maneuver, where a static glottis underpredicts the total particle deposition in the TB model for lower sized particles (dp≤ 3 µm) compared to predictions for all dynamic glottal motions. In contrast, for larger size particles (i.e., 5 ≤dp≤ 10 µm), a static glottis yields lower total deposition in the TB model compared with dynamic glottal motions. Our study also underlines that regional deposition of smaller micron-sized particles is most affected by glottal deformation in the conducting airways.


Subject(s)
Glottis , Models, Biological , Administration, Inhalation , Aerosols , Bronchi , Computer Simulation , Humans , Lung , Particle Size
14.
Chem Rev ; 122(7): 7182-7204, 2022 04 13.
Article in English | MEDLINE | ID: mdl-34964615

ABSTRACT

The dynamics of respiratory airflows and the associated transport mechanisms of inhaled aerosols characteristic of the deep regions of the lungs are of broad interest in assessing both respiratory health risks and inhalation therapy outcomes. In the present review, we present a comprehensive discussion of our current understanding of airflow and aerosol transport phenomena that take place within the unique and complex anatomical environment of the deep lungs, characterized by submillimeter 3D alveolated airspaces and nominally slow resident airflows, known as low-Reynolds-number flows. We exemplify the advances brought forward by experimental efforts, in conjunction with numerical simulations, to revisit past mechanistic theories of respiratory airflow and particle transport in the distal acinar regions. Most significantly, we highlight how microfluidic-based platforms spanning the past decade have accelerated opportunities to deliver anatomically inspired in vitro solutions that capture with sufficient realism and accuracy the leading mechanisms governing both respiratory airflow and aerosol transport at true scale. Despite ongoing challenges and limitations with microfabrication techniques, the efforts witnessed in recent years have provided previously unattainable in vitro quantifications on the local transport properties in the deep pulmonary acinar airways. These may ultimately provide new opportunities to explore improved strategies of inhaled drug delivery to the deep acinar regions by investigating further the mechanistic interactions between airborne particulate carriers and respiratory airflows at the pulmonary microscales.


Subject(s)
Microfluidics , Pulmonary Alveoli , Aerosols , Computer Simulation , Lung , Models, Biological , Particle Size
16.
Front Bioeng Biotechnol ; 9: 743236, 2021.
Article in English | MEDLINE | ID: mdl-34692661

ABSTRACT

Complex in vitro models, especially those based on human cells and tissues, may successfully reduce or even replace animal models within pre-clinical development of orally inhaled drug products. Microfluidic lung-on-chips are regarded as especially promising models since they allow the culture of lung specific cell types under physiological stimuli including perfusion and air-liquid interface (ALI) conditions within a precisely controlled in vitro environment. Currently, though, such models are not available to a broad user community given their need for sophisticated microfabrication techniques. They further require systematic comparison to well-based filter supports, in analogy to traditional Transwells®. We here present a versatile perfusable platform that combines the advantages of well-based filter supports with the benefits of perfusion, to assess barrier permeability of and aerosol deposition on ALI cultured pulmonary epithelial cells. The platform as well as the required technical accessories can be reproduced via a detailed step-by-step protocol and implemented in typical bio-/pharmaceutical laboratories without specific expertise in microfabrication methods nor the need to buy costly specialized equipment. Calu-3 cells cultured under liquid covered conditions (LCC) inside the platform showed similar development of transepithelial electrical resistance (TEER) over a period of 14 days as cells cultured on a traditional Transwell®. By using a customized deposition chamber, fluorescein sodium was nebulized via a clinically relevant Aerogen® Solo nebulizer onto Calu-3 cells cultured under ALI conditions within the platform. This not only allowed to analyze the transport of fluorescein sodium after ALI deposition under perfusion, but also to compare it to transport under traditional static conditions.

17.
Science ; 373(6558)2021 08 27.
Article in English | MEDLINE | ID: mdl-34446582

ABSTRACT

The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols-how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.


Subject(s)
Air Microbiology , COVID-19/transmission , Respiratory Tract Infections/transmission , SARS-CoV-2 , Virus Diseases/transmission , Virus Physiological Phenomena , Aerosols , COVID-19/virology , Disease Transmission, Infectious , Humans , Microbial Viability , Particle Size , Respiratory System/virology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Viral Load , Virus Diseases/virology , Viruses/isolation & purification
18.
Adv Drug Deliv Rev ; 176: 113901, 2021 09.
Article in English | MEDLINE | ID: mdl-34331989

ABSTRACT

Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.


Subject(s)
Drug Evaluation, Preclinical/methods , Lung , Models, Biological , Respiratory System Agents/therapeutic use , Animals , Bioengineering , Humans , Translational Science, Biomedical
19.
J Biomech ; 122: 110458, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33932914

ABSTRACT

Liquid plug therapies are commonly instilled in premature babies suffering from infant respiratory distress syndrome (IRDS) by a procedure called surfactant replacement therapy (SRT) in which a surfactant-laden bolus is instilled endotracheally in the neonatal lungs, dramatically reducing mortality and morbidity in neonatal populations. Since data are frequently limited, the optimal method for surfactant delivery has yet to be established towards more standardized guidelines. Here, we explore the dynamics of liquid plug transport using an anatomically-relevant, true-scale in vitro 3D model of the upper airways of a premature infant. We quantify the initial plug's distribution as a function of two underlying parameters that can be clinically controlled; namely, the injection flow rate and the viscosity of the administered fluid. By extracting a homogeneity index (HI), our in vitro results underline how the combination of both high fluid viscosity and injection flow rates may be advantageous in improving homogeneous dispersion. Such outcomes are anticipated to help refine future SRT administration guidelines towards more uniform distribution using more anatomically-realistic 3D in vitro models at true scale of the preterm neonate.


Subject(s)
Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Humans , Infant , Infant, Newborn , Infant, Premature , Lung , Pulmonary Surfactants/therapeutic use , Respiratory Distress Syndrome, Newborn/drug therapy , Trachea
20.
J Biomech ; 118: 110279, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33545572

ABSTRACT

The pulmonary tract is an attractive route for topical treatments of lung diseases. Yet, our ability to confine the deposition of inhalation aerosols to specific lung regions, or local airways, remains still widely beyond reach. It has been hypothesized that by coupling magnetic particles to inhaled therapeutics the ability to locally target airway sites can be substantially improved. Although the underlying principle has shown promise in seminal in vivo animal experiments as well as in vitro and in silico studies, its practical implementation has come short of delivering efficient localized airway targeting. Here, we demonstrate in an in vitro proof-of-concept an inhalation framework to leverage magnetically-loaded aerosols for airway targeting in the presence of an external magnetic field. By coupling the delivery of a short pulsed bolus of sub-micron (~500 nm diameter) droplet aerosols with a custom ventilation machine that tracks the volume of air inhaled past the bolus, focused targeting can be maximized during a breath hold maneuver. Specifically, we visualize the motion of the pulsed SPION-laden (superparamagnetic iron oxide nanoparticles) aerosol bolus and quantify under microscopy ensuing deposition patterns in reconstructed 3D airway models. Our aerosol inhalation platform allows for the first time to deposit inhaled particles to specific airway sites while minimizing undesired deposition across the remaining airspace, in an effort to significantly augment the targeting efficiency (i.e. deposition ratio between targeted and untargeted regions). Such inhalation strategy may pave the way for improved treatment outcomes, including reducing side effects in chemotherapy.


Subject(s)
Lung , Magnetic Phenomena , Administration, Inhalation , Aerosols , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...