Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Hemasphere ; 7(8): e935, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37520776

ABSTRACT

Chromosomal translocations involving the NUP98 locus are among the most prevalent rearrangements in pediatric acute myeloid leukemia (AML). AML with NUP98 fusions is characterized by high expression of HOXA and MEIS1 genes and is associated with poor clinical outcome. NUP98 fusion proteins are recruited to their target genes by the mixed lineage leukemia (MLL) complex, which involves a direct interaction between MLL and Menin. Here, we show that therapeutic targeting of the Menin-MLL interaction inhibits the propagation of NUP98-rearrranged AML both ex vivo and in vivo. Treatment of primary AML cells with the Menin inhibitor revumenib (SNDX-5613) impairs proliferation and clonogenicity ex vivo in long-term coculture and drives myeloid differentiation. These phenotypic effects are associated with global gene expression changes in primary AML samples that involve the downregulation of many critical NUP98 fusion protein-target genes, such as MEIS1 and CDK6. In addition, Menin inhibition reduces the expression of both wild-type FLT3 and mutated FLT3-ITD, and in combination with FLT3 inhibitor, suppresses patient-derived NUP98-r AML cells in a synergistic manner. Revumenib treatment blocks leukemic engraftment and prevents leukemia-associated death of immunodeficient mice transplanted with NUP98::NSD1 FLT3-ITD-positive patient-derived AML cells. These results demonstrate that NUP98-rearranged AMLs are highly susceptible to inhibition of the MLL-Menin interaction and suggest the inclusion of AML patients harboring NUP98 fusions into the clinical evaluation of Menin inhibitors.

2.
Blood ; 140(17): 1875-1890, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35839448

ABSTRACT

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.


Subject(s)
Myeloid-Lymphoid Leukemia Protein , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Epigenesis, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genes, Regulator , Chromatin
3.
Cancers (Basel) ; 14(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008187

ABSTRACT

Chronic lymphocytic leukaemia (CLL) is a heterogeneous disease with a highly variable clinical outcome. There are well-established CLL prognostic biomarkers that have transformed treatment and improved the understanding of CLL biology. Here, we have studied the clinical significance of two crucial B cell regulators, BACH2 (BTB and CNC homology 1, basic leucine zipper transcription factor 2) and BCL6 (B-cell CLL/lymphoma 6), in a cohort of 102 CLL patients and determined the protein interaction networks that they participate in using MEC-1 CLL cells. We observed that CLL patients expressing low levels of BCL6 and BACH2 RNA had significantly shorter overall survival (OS) than high BCL6- and BACH2-expressing cases. Notably, their low expression specifically decreased the OS of immunoglobulin heavy chain variable region-mutated (IGHV-M) CLL patients, as well as those with 11q and 13q deletions. Similar to the RNA data, a low BACH2 protein expression was associated with a significantly shorter OS than a high expression. There was no direct interaction observed between BACH2 and BCL6 in MEC-1 CLL cells, but they shared protein networks that included fifty different proteins. Interestingly, a prognostic index (PI) model that we generated, using integrative risk score values of BACH2 RNA expression, age, and 17p deletion status, predicted patient outcomes in our cohort. Taken together, these data have shown for the first time a possible prognostic role for BACH2 in CLL and have revealed protein interaction networks shared by BCL6 and BACH2, indicating a significant role for BACH2 and BCL6 in key cellular processes, including ubiquitination mediated B-cell receptor functions, nucleic acid metabolism, protein degradation, and homeostasis in CLL biology.

4.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081245

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the Western World and it is characterized by a marked degree of clinical heterogeneity. An impaired balance between pro- and anti-apoptotic stimuli determines chemorefractoriness and outcome. The low proliferation rate of CLL cells indicates that one of the primary mechanisms involved in disease development may be an apoptotic failure. Here, we study the clinical and functional significance of DRAK2, a novel stress response kinase that plays a critical role in apoptosis, T-cell biology, and B-cell activation in CLL. We have analyzed CLL patient samples and showed that low expression levels of DRAK2 were significantly associated with unfavorable outcome in our CLL cohort. DRAK2 expression levels showed a positive correlation with the expression of DAPK1, and TGFBR1. Consistent with clinical data, the downregulation of DRAK2 in MEC-1 CLL cells strongly increased cell viability and proliferation. Further, our transcriptome data from MEC-1 cells highlighted MAPK, NF-κB, and Akt and as critical signaling hubs upon DRAK2 knockdown. Taken together, our results indicate DRAK2 as a novel marker of CLL survival that plays key regulatory roles in CLL prognosis.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Biomarkers, Tumor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Protein Serine-Threonine Kinases/metabolism , Aged , Apoptosis Regulatory Proteins/genetics , Biomarkers, Tumor/genetics , Cell Proliferation , Cell Survival , Death-Associated Protein Kinases/genetics , Death-Associated Protein Kinases/metabolism , Down-Regulation , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , MAP Kinase Signaling System , Male , Middle Aged , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism
5.
Radiat Res ; 194(2): 133-142, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32383628

ABSTRACT

Exosomes are key mediators of cell-to-cell communication involved in different aspects of the response to ionizing radiation. The functional role of exosomes depends on their molecular cargo, including protein and miRNA content. In this work, we compared the miRNA profile of cells exposed to a high-dose of radiation and the exosomes released by those cells. FaDu cells (derived from human head and neck cancer) were exposed to 2 and 8 Gy doses, exosomes were purified from culture media at 36 h postirradiation using a combination of differential centrifugation, ultrafiltration and precipitation, then microRNA was analyzed using the RNA-seq approach. There were 439 miRNA species quantified, and significant differences in their relative abundance were observed between the cells and exosomes; several low-abundance miRNAs were over-represented while high-abundance miRNA were under-represented in exosomes. There were a few miRNA species markedly affected in irradiated cells and in exosomes released by these cells. However, markedly different radiation-induced effects were observed in both miRNA sets, which could be exemplified by miR-3168 significantly downregulated in cells and upregulated in exosomes. On the other hand, both 2 and 8 Gy radiation doses induced similar effects. Radiation-affected miRNA species present in exosomes are linked to genes involved in the DNA damage and cytokine-mediated response, which may suggest their hypothetical role in the exosome-mediated radiation-induced bystander effect reported elsewhere.


Subject(s)
Exosomes/metabolism , Exosomes/radiation effects , MicroRNAs/genetics , Cell Communication/radiation effects , Cell Line , Computational Biology , Humans
6.
BMC Genomics ; 19(1): 813, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30419821

ABSTRACT

BACKGROUND: The cellular response to ionizing radiation involves activation of p53-dependent pathways and activation of the atypical NF-κB pathway. The crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Here we looked for novel genes potentially (co)regulated by p53 and NF-κB using integrative genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-κB subunit) genes was analyzed by RNA-Seq while radiation-enhanced binding of p53 and RelA in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR. RESULTS: We identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes, namely IL4I1, SERPINE1, and CDKN1A, an antagonistic effect of the TP53 and RELA silencing was consistent with radiation-enhanced binding of both p53 and RelA. This suggested the possibility of a direct antagonistic (co)regulation by both factors: activation by NF-κB and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-κB of CDKN1A and SERPINE1. On the other hand, radiation-enhanced binding of both p53 and RelA was observed in a putative regulatory region of the RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors. CONCLUSIONS: Four new candidates for genes directly co-regulated by NF-κB and p53 were revealed.


Subject(s)
Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Osteosarcoma/genetics , Radiation, Ionizing , Binding Sites , Biomarkers, Tumor/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/radiotherapy , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , L-Amino Acid Oxidase/genetics , L-Amino Acid Oxidase/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Osteosarcoma/pathology , Osteosarcoma/radiotherapy , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Transcriptional Activation , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , ras Proteins/genetics , ras Proteins/metabolism
7.
Cell Signal ; 46: 23-31, 2018 06.
Article in English | MEDLINE | ID: mdl-29476964

ABSTRACT

The NF-κB transcription factors are activated via diverse molecular mechanisms in response to various types of stimuli. A plethora of functions associated with specific sets of target genes could be regulated differentially by this factor, affecting cellular response to stress including an anticancer treatment. Here we aimed to compare subsets of NF-κB-dependent genes induced in cells stimulated with a pro-inflammatory cytokine and in cells damaged by a high dose of ionizing radiation (4 and 10 Gy). The RelA-containing NF-κB species were activated by the canonical TNFα-induced and the atypical radiation-induced pathways in human osteosarcoma cells. NF-κB-dependent genes were identified using the gene expression profiling (by RNA-Seq) in cells with downregulated RELA combined with the global profiling of RelA binding sites (by ChIP-Seq), with subsequent validation of selected candidates by quantitative PCR. There were 37 NF-κB-dependent protein-coding genes identified: in all cases RelA bound in their regulatory regions upon activation while downregulation of RELA suppressed their stimulus-induced upregulation, which apparently indicated the positive regulation mode. This set of genes included a few "novel" NF-κB-dependent species. Moreover, the evidence for possible negative regulation of ATF3 gene by NF-κB was collected. The kinetics of the NF-κB activation was slower in cells exposed to radiation than in cytokine-stimulated ones. However, subsets of NF-κB-dependent genes upregulated by both types of stimuli were essentially the same. Hence, one should expect that similar cellular processes resulting from activation of the NF-κB pathway could be induced in cells responding to pro-inflammatory cytokines and in cells where so-called "sterile inflammation" response was initiated by radiation-induced damage.


Subject(s)
Bone Neoplasms/genetics , Gene Expression Regulation, Neoplastic , NF-kappa B/metabolism , Osteosarcoma/genetics , Tumor Necrosis Factor-alpha/pharmacology , Activating Transcription Factor 3/genetics , Binding Sites , Cell Line, Tumor , Dose-Response Relationship, Radiation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Radiation, Ionizing , Regulatory Sequences, Nucleic Acid , Sequence Analysis, RNA , Transcription Factor RelA/metabolism
8.
Strahlenther Onkol ; 194(3): 235-242, 2018 03.
Article in English | MEDLINE | ID: mdl-29063166

ABSTRACT

PURPOSE: Improvement of radiotherapy techniques reduces the exposure of normal tissues to ionizing radiation. However, the risk of radiation-related late effects remains elevated. In the present study, we investigated long-term effects of radiation on heart muscle morphology. MATERIALS AND METHODS: We established a mouse model to study microvascular density (MVD), deposition of collagen fibers, and changes in accumulation of heat shock 70 kDa protein 1 (HSPA1) in irradiated heart tissue. Hearts of C57BL/6 mice received a single dose of X­ray radiation in the range 0.2-16 Gy. Analyses were performed 20, 40, and 60 weeks after irradiation. RESULTS: Reduction in MD was revealed as a long-term effect observed 20-60 weeks after irradiation. Moreover, a significant and dose-dependent increase in accumulation of HSPA1, both cytoplasmic and nuclear, was observed in heart tissues collected 20 weeks after irradiation. We also noticed an increase in collagen deposition in hearts treated with higher doses. CONCLUSIONS: This study shows that some changes induced by radiation in the heart tissue, such as reduction in microvessel density, increase in collagen deposition, and accumulation of HSPA1, are observed as long-term effects which might be associated with late radiation cardiotoxicity.


Subject(s)
Coronary Vessels/radiation effects , HSP70 Heat-Shock Proteins/metabolism , Heart/radiation effects , Microvessels/radiation effects , Radiation Injuries, Experimental/pathology , Animals , Cardiotoxicity/pathology , Collagen/metabolism , Coronary Vessels/pathology , Dose-Response Relationship, Radiation , Male , Mice , Mice, Inbred C57BL , Microvessels/pathology
9.
Genes Cells ; 22(1): 45-58, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27976481

ABSTRACT

Pathways depending on the NF-κB transcription factor are essential components of cellular response to stress. Plethora of stimuli modulating NF-κB includes inflammatory signals, ultraviolet radiation (UV) and reactive oxygen species (ROS), yet interference between different factors affecting NF-κB remains relatively understudied. Here, we aim to characterize the influence of UV radiation on TNF-α-induced activity of the NF-κB pathway. We document inhibition of TNF-α-induced activation of NF-κB and subsequent suppression of NF-κB-regulated genes in cells exposed to UV-C several hours before TNF-α stimulation. Accumulation of ROS and subsequent activation of NRF2, p53, AP-1 and NF-κB-dependent pathways, with downstream activation of antioxidant mechanisms (e.g., SOD2 and HMOX1 expression), is observed in the UV-treated cells. Moreover, NF-κB inhibition is not observed if generation of UV-induced ROS is suppressed by chemical antioxidants. It is noteworthy that stimulation with TNF-α also generates a wave of ROS, which is suppressed in cells pre-treated by UV. We postulate that irradiation with UV-C activates antioxidant mechanisms, which in turn affect ROS-mediated activation of NF-κB by TNF-α. Considering a potential cross talk between p53 and NF-κB, we additionally compare observed effects in p53-proficient and p53-deficient cells and find the UV-mediated suppression of TNF-α-activated NF-κB in both types of cells.


Subject(s)
NF-kappa B/biosynthesis , Reactive Oxygen Species/metabolism , Transcription Factor RelA/biosynthesis , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/genetics , Antioxidants/metabolism , Apoptosis , Gene Expression Regulation/radiation effects , HCT116 Cells , Heme Oxygenase-1/biosynthesis , Humans , NF-kappa B/genetics , Phosphorylation , Signal Transduction/radiation effects , Superoxide Dismutase/biosynthesis , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays
11.
BMC Syst Biol ; 10(1): 75, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27526774

ABSTRACT

BACKGROUND: Ataxia telangiectasia mutated (ATM) is a detector of double-strand breaks (DSBs) and a crucial component of the DNA damage response (DDR) along with p53 and NF- κB transcription factors and Wip1 phosphatase. Despite the recent advances in studying the DDR, the mechanisms of cell fate determination after DNA damage induction is still poorly understood. RESULTS: To investigate the importance of various DDR elements with particular emphasis on Wip1, we developed a novel mathematical model of ATM/p53/NF- κB pathways. Our results from in silico and in vitro experiments performed on U2-OS cells with Wip1 silenced to 25 % (Wip1-RNAi) revealed a strong dependence of cellular response to DNA damages on this phosphatase. Notably, Wip1-RNAi cells exhibited lower resistance to ionizing radiation (IR) resulting in smaller clonogenicity and higher apoptotic fraction. CONCLUSIONS: In this article, we demonstrated that Wip1 plays a role as a gatekeeper of apoptosis and influences the pro-survival behaviour of cells - the level of Wip1 increases to block the apoptotic decision when DNA repair is successful. Moreover, we were able to verify the dynamics of proteins and transcripts, apoptotic fractions and cells viability obtained from stochastic simulations using in vitro approaches. Taken together, we demonstrated that the model can be successfully used in prediction of cellular behaviour after exposure to IR. Thus, our studies may provide further insights into key elements involved in the underlying mechanisms of the DDR.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Models, Biological , NF-kappa B/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Survival , Humans , Kinetics , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
12.
Mol Genet Genomics ; 290(5): 1979-90, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25944781

ABSTRACT

Heat shock inhibits NF-κB signaling, yet the knowledge about its influence on the regulation of NF-κB-dependent genes is limited. Using genomic approaches, i.e., expression microarrays and ChIP-Seq, we aimed to establish a global picture for heat shock-mediated impact on the expression of genes regulated by TNFα cytokine. We found that 193 genes changed expression in human U-2 osteosarcoma cells stimulated with cytokine (including 77 genes with the κB motif in the proximal promoters). A large overlap between sets of genes modulated by cytokine or by heat shock was revealed (86 genes were similarly affected by both stimuli). Binding sites for heat shock-induced HSF1 were detected in regulatory regions of 1/3 of these genes. Furthermore, pre-treatment with heat shock affected the expression of 2/3 of cytokine-modulated genes. In the largest subset of co-affected genes, heat shock suppressed the cytokine-mediated activation (antagonistic effect, 83 genes), which genes were associated with the canonical functions of NF-κB signaling. However, subsets of co-activated and co-repressed genes were also revealed. Importantly, pre-treatment with heat shock resulted in the suppression of NF-κB binding in the promoters of the cytokine-upregulated genes, either antagonized or co-activated by both stimuli. In conclusion, we confirmed that heat shock inhibited activation of genes involved in the classical cytokine-mediated functions of NF-κB. On the other hand, genes involved in transcription regulation were over-represented in the subset of genes upregulated by both stimuli. This suggests the replacement of NF-κB-mediated regulation by heat shock-mediated regulation in the latter subset of genes, which may contribute to the robust response of cells to both stress conditions.


Subject(s)
Cytokines/metabolism , Fever/metabolism , Gene Expression Regulation/physiology , Heat-Shock Response , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/physiology , Cell Line, Tumor , Humans , Transcription, Genetic
13.
Genes Cells ; 16(12): 1168-75, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22077664

ABSTRACT

NF-κB transcription factor regulates numerous genes important for inflammation, immune responses and cell survival. HSF1 is the primary transcription factor activated under stress conditions that is responsible for induction of genes encoding heat shock proteins. Previous studies have shown that the NF-κB activation pathway is blocked by heat shock possibly involving heat shock proteins. Here, we investigate whether active HSF1 inhibited this pathway in the absence of stress conditions. Activation of the NF-κB pathway and expression of NF-κB-dependent genes were analyzed in TNFα-stimulated U-2 OS human osteosarcoma cells that were either heat-shocked or engineered to express a constitutively active form of HSF1 in the absence of heat shock. As expected, heat shock resulted in a general blockade in the degradation of the IκBα inhibitor, nuclear translocation of NF-κB and expression of NF-κB-dependent target genes. In marked contrast, the presence of constitutively active HSF1 did not block TNFα-induced activation of the NF-κB pathway or expression of a set of the NF-κB-dependent genes. We conclude that in the absence of heat shock, the NF-κB activation pathway is inhibited by neither active HSF1 transcription factor nor by increased levels of HSF1-induced heat shock proteins.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression , Heat-Shock Proteins/metabolism , NF-kappa B/metabolism , Osteosarcoma/metabolism , Protein Transport/drug effects , Signal Transduction/drug effects , Transcription Factors/metabolism , Blotting, Western , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytosol/drug effects , Cytosol/metabolism , DNA-Binding Proteins/genetics , Electrophoretic Mobility Shift Assay , Heat Shock Transcription Factors , Heat-Shock Proteins/genetics , Heat-Shock Response/physiology , Hot Temperature , Humans , NF-kappa B/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Plasmids , Polymerase Chain Reaction , Protein Transport/physiology , Signal Transduction/physiology , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Transcription Factors/genetics , Transfection , Tumor Necrosis Factor-alpha/pharmacology
14.
BMC Biotechnol ; 11: 10, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21276227

ABSTRACT

BACKGROUND: Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. RESULTS: Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification.Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. CONCLUSIONS: All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products.


Subject(s)
Flavonoids/genetics , Flax/genetics , Genetic Engineering/methods , Plants, Genetically Modified/genetics , Cellulose/chemistry , Chromatography, High Pressure Liquid , Flavonoids/metabolism , Flax/metabolism , Methanol , Microscopy, Electron, Scanning , Peroxides/metabolism , Plant Oils/metabolism , Plants, Genetically Modified/metabolism , Seeds/chemistry , Spectrophotometry, Infrared , Thiobarbituric Acid Reactive Substances/metabolism
15.
Acta Biochim Pol ; 55(4): 741-8, 2008.
Article in English | MEDLINE | ID: mdl-19023456

ABSTRACT

The signaling pathways that depend on p53 or NFkappaB transcription factors are essential components of cellular responses to stress. In general, p53 is involved in either activation of cell cycle arrest or induction of apoptosis, while NFkappaB exerts mostly anti-apoptotic functions; both regulatory pathways apparently interfere with each other. Here we aimed to analyze the effects of NFkappaB activation on DNA damage-induced apoptosis, either p53-dependent or p53-independent, in a set of human cell lines. Four cell lines, HCT116 and RKO colon carcinoma, NCI-H1299 lung carcinoma and HL60 myeloblastoma, each of them in two congenic variants either containing or lacking transcriptionally competent p53, were used. Cells were incubated with TNFalpha cytokine to activate NFkappaB and then treated with ultraviolet or ionizing radiation to induce apoptosis, which was assessed by measurement of the sub-G1 cell fraction. We observed that treatment with TNFalpha resulted in a significant reduction in the frequency of apoptotic cells in UV-irradiated p53-proficient lines (with exception of the UV-resistant NCI-H1299 cells). This anti-apoptotic effect was lost when cells were pretreated with parthenolide, an inhibitor of NFkappaB activation. In marked contrast, TNFalpha-pretreatment of p53-deficient lines resulted in an increased frequency of apoptotic cells after UV irradiation (with exception of HL60 cells). Such anti- and pro-apoptotic influence of TNFalpha was less obvious in cells treated with ionizing radiation. The data clearly indicates functional interference of both signaling pathways upon the damage-induced apoptotic response, yet the observed effects are both cell type- and stimulus-specific.


Subject(s)
Apoptosis/radiation effects , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays , Apoptosis/drug effects , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...