Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Transl Psychiatry ; 11(1): 300, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016947

ABSTRACT

Stress negatively affects cognitive performance. Probiotics remediate somatic and behavioral stress responses, hypothetically by acting on the gut microbiota. Here, in exploratory analyses, we assessed gut microbial alterations after 28-days supplementation of multi-strain probiotics (EcologicBarrier consisting of Lactobacilli, Lactococci, and Bifidobacteria in healthy, female subjects (probiotics group n = 27, placebo group n = 29). In an identical pre-session and post-session, subjects performed a working memory task before and after an acute stress intervention. Global gut microbial beta diversity changed over time, but we were not able to detect differences between intervention groups. At the taxonomic level, Time by Intervention interactions were not significant after multiple comparison correction; the relative abundance of eight genera in the probiotics group was higher (uncorrected) relative to the placebo group: Butyricimonas, Parabacteroides, Alistipes, Christensenellaceae_R-7_group, Family_XIII_AD3011_group, Ruminococcaceae_UCG-003, Ruminococcaceae_UCG-005, and Ruminococcaceae_UCG-010. In a second analysis step, association analyses were done only within this selection of microbial genera, revealing the probiotics-induced change in genus Ruminococcaceae_UCG-003 was significantly associated with probiotics' effect on stress-induced working memory changes (rspearman(27) = 0.565; pFDR = 0.014) in the probiotics group only and independent of potential confounders (i.e., age, BMI, and baseline dietary fiber intake). That is subjects with a higher increase in Ruminococcaceae_UCG-003 abundance after probiotics were also more protected from negative effects of stress on working memory after probiotic supplementation. The bacterial taxa showing an increase in relative abundance in the probiotics group are plant fiber degrading bacteria and produce short-chain fatty acids that are known for their beneficial effect on gut and brain health, e.g., maintaining intestinal-barrier and blood-brain-barrier integrity. This study shows that gut microbial alterations, modulated through probiotics use, are related to improved cognitive performance in acute stress circumstances.


Subject(s)
Cognition , Gastrointestinal Microbiome , Probiotics , Bacteria , Female , Humans , Stress, Psychological , Young Adult
3.
Nat Genet ; 53(2): 156-165, 2021 02.
Article in English | MEDLINE | ID: mdl-33462485

ABSTRACT

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10-8) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10-20), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10-10 < P < 5 × 10-8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.


Subject(s)
Gastrointestinal Microbiome/physiology , Genetic Variation , Quantitative Trait Loci , Adolescent , Adult , Bifidobacterium/genetics , Child , Child, Preschool , Cohort Studies , Female , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Humans , Lactase/genetics , Linkage Disequilibrium , Male , Mendelian Randomization Analysis , Metabolism/genetics , RNA, Ribosomal, 16S
4.
Microorganisms ; 8(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183143

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Given the growing evidence of gut microbiota being involved in psychiatric (including neurodevelopmental) disorders, we aimed to identify differences in gut microbiota composition between participants with ADHD and controls and to investigate the role of the microbiota in inattention and hyperactivity/impulsivity. Fecal samples were collected from 107 participants (NADHD = 42; Ncontrols = 50; NsubthreholdADHD = 15; range age: 13-29 years). The relative quantification of bacterial taxa was done using 16S ribosomal RNA gene amplicon sequencing. Beta-diversity revealed significant differences in bacterial composition between participants with ADHD and healthy controls, which was also significant for inattention, but showing a trend in case of hyperactivity/impulsivity only. Ten genera showed nominal differences (p < 0.05) between both groups, of which seven genera were tested for their association with ADHD symptom scores (adjusting for age, sex, body mass index, time delay between feces collection and symptoms assessment, medication use, and family relatedness). Our results show that variation of a genus from the Ruminococcaceae family (Ruminococcaceae_UCG_004) is associated (after multiple testing correction) with inattention symptoms and support the potential role of gut microbiota in ADHD pathophysiology.

5.
Gastroenterol Clin North Am ; 48(3): 407-431, 2019 09.
Article in English | MEDLINE | ID: mdl-31383279

ABSTRACT

Genetic and environmental factors play a role in the cause and development of attention-deficit/hyperactivity disorder (ADHD). Recent studies have suggested an important role of the gut-brain axis (GBA) and intestinal microbiota in modulating the risk of ADHD. Here, the authors provide a brief overview of the clinical and biological picture of ADHD and how the GBA could be involved in its cause. They discuss key biological mechanisms involved in the GBA and how these may increase the risk of developing ADHD. Understanding these mechanisms may help to characterize novel treatment options via identification of disease biomarkers.


Subject(s)
Attention Deficit Disorder with Hyperactivity/etiology , Brain/physiology , Gastrointestinal Microbiome/physiology , Diet , Humans , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...