Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 7078, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400786

ABSTRACT

Collagen I, the most abundant protein in humans, is ubiquitous in solid tumors where it provides a rich source of exploitable metabolic fuel for cancer cells. While tumor cells were unable to exploit collagen directly, here we show they can usurp metabolic byproducts of collagen-consuming tumor-associated stroma. Using genetically engineered mouse models, we discovered that solid tumor growth depends upon collagen binding and uptake mediated by the TEM8/ANTXR1 cell surface protein in tumor-associated stroma. Tumor-associated stromal cells processed collagen into glutamine, which was then released and internalized by cancer cells. Under chronic nutrient starvation, a condition driven by the high metabolic demand of tumors, cancer cells exploited glutamine to survive, an effect that could be reversed by blocking collagen uptake with TEM8 neutralizing antibodies. These studies reveal that cancer cells exploit collagen-consuming stromal cells for survival, exposing an important vulnerability across solid tumors with implications for developing improved anticancer therapy.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Mice , Animals , Cell Survival , Glutamine , Collagen/metabolism , Microfilament Proteins , Receptors, Cell Surface
2.
J Clin Invest ; 128(7): 2927-2943, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29863500

ABSTRACT

Although nonmalignant stromal cells facilitate tumor growth and can occupy up to 90% of a solid tumor mass, better strategies to exploit these cells for improved cancer therapy are needed. Here, we describe a potent MMAE-linked antibody-drug conjugate (ADC) targeting tumor endothelial marker 8 (TEM8, also known as ANTXR1), a highly conserved transmembrane receptor broadly overexpressed on cancer-associated fibroblasts, endothelium, and pericytes. Anti-TEM8 ADC elicited potent anticancer activity through an unexpected killing mechanism we term DAaRTS (drug activation and release through stroma), whereby the tumor microenvironment localizes active drug at the tumor site. Following capture of ADC prodrug from the circulation, tumor-associated stromal cells release active MMAE free drug, killing nearby proliferating tumor cells in a target-independent manner. In preclinical studies, ADC treatment was well tolerated and induced regression and often eradication of multiple solid tumor types, blocked metastatic growth, and prolonged overall survival. By exploiting TEM8+ tumor stroma for targeted drug activation, these studies reveal a drug delivery strategy with potential to augment therapies against multiple cancer types.


Subject(s)
Immunoconjugates/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Receptors, Cell Surface/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/deficiency , Biomarkers, Tumor/genetics , Brentuximab Vedotin , Cell Line, Tumor , Female , Humans , Immunoconjugates/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Mice, SCID , Microfilament Proteins , Neoplasms/metabolism , Receptors, Peptide/antagonists & inhibitors , Receptors, Peptide/deficiency , Receptors, Peptide/genetics , Stromal Cells/drug effects , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
3.
Cancer Res ; 78(2): 489-500, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29183891

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive disease lacking targeted therapy. In this study, we developed a CAR T cell-based immunotherapeutic strategy to target TEM8, a marker initially defined on endothelial cells in colon tumors that was discovered recently to be upregulated in TNBC. CAR T cells were developed that upon specific recognition of TEM8 secreted immunostimulatory cytokines and killed tumor endothelial cells as well as TEM8-positive TNBC cells. Notably, the TEM8 CAR T cells targeted breast cancer stem-like cells, offsetting the formation of mammospheres relative to nontransduced T cells. Adoptive transfer of TEM8 CAR T cells induced regression of established, localized patient-derived xenograft tumors, as well as lung metastatic TNBC cell line-derived xenograft tumors, by both killing TEM8+ TNBC tumor cells and targeting the tumor endothelium to block tumor neovascularization. Our findings offer a preclinical proof of concept for immunotherapeutic targeting of TEM8 as a strategy to treat TNBC.Significance: These findings offer a preclinical proof of concept for immunotherapeutic targeting of an endothelial antigen that is overexpressed in triple-negative breast cancer and the associated tumor vasculature. Cancer Res; 78(2); 489-500. ©2017 AACR.


Subject(s)
Cell- and Tissue-Based Therapy , Immunotherapy , Lung Neoplasms/therapy , Neoplasm Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Cell Surface/metabolism , T-Lymphocytes/transplantation , Triple Negative Breast Neoplasms/therapy , Animals , Apoptosis , Biomarkers, Tumor , Case-Control Studies , Cell Proliferation , Female , Follow-Up Studies , Humans , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Mice , Microfilament Proteins , Prognosis , Survival Rate , T-Lymphocytes/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Cancer Cell ; 31(4): 501-515.e8, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28399408

ABSTRACT

Targeting the tumor vasculature with antibody-drug conjugates (ADCs) is a promising anti-cancer strategy that in order to be realized must overcome several obstacles, including identification of suitable targets and optimal warheads. Here, we demonstrate that the cell-surface protein CD276/B7-H3 is broadly overexpressed by multiple tumor types on both cancer cells and tumor-infiltrating blood vessels, making it a potentially ideal dual-compartment therapeutic target. In preclinical studies CD276 ADCs armed with a conventional MMAE warhead destroyed CD276-positive cancer cells, but were ineffective against tumor vasculature. In contrast, pyrrolobenzodiazepine-conjugated CD276 ADCs killed both cancer cells and tumor vasculature, eradicating large established tumors and metastases, and improving long-term overall survival. CD276-targeted dual-compartment ablation could aid in the development of highly selective broad-acting anti-cancer therapies.


Subject(s)
B7 Antigens/genetics , B7 Antigens/metabolism , Immunoconjugates/pharmacology , Neoplasms/blood supply , Animals , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , B7 Antigens/immunology , Benzodiazepines/pharmacology , Blood Vessels/metabolism , Blood Vessels/pathology , Cell Line, Tumor , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Female , Humans , Immunoconjugates/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Targeted Therapy/methods , Neoplasms/pathology , Neoplasms/therapy , Oligopeptides/pharmacology , Pyrroles/pharmacology , Rabbits
5.
Sci Rep ; 5: 14999, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26459930

ABSTRACT

Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 µs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 µs, containing individual pulses 1, 2, or 5 µs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.


Subject(s)
Electroporation/methods , Neoplasms/pathology , Neoplasms/therapy , Animals , Cell Line, Tumor , Disease Models, Animal , Male , Mice , Tumor Burden , Xenograft Model Antitumor Assays
6.
Mol Pharm ; 11(11): 3996-4006, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-24984190

ABSTRACT

Tumor endothelial marker 8 (TEM8) is a cell surface receptor that is highly expressed in a variety of human tumors and promotes tumor angiogenesis and cell growth. Antibodies targeting TEM8 block tumor angiogenesis in a manner distinct from the VEGF receptor pathway. Development of a TEM8 imaging agent could aid in patient selection for specific antiangiogenic therapies and for response monitoring. In these studies, L2, a therapeutic anti-TEM8 monoclonal IgG antibody (L2mAb), was labeled with (89)Zr and evaluated in vitro and in vivo in TEM8 expressing cells and mouse xenografts (NCI-H460, DLD-1) as a potential TEM8 immuno-PET imaging agent. (89)Zr-df-L2mAb was synthesized using a desferioxamine-L2mAb conjugate (df-L2mAb); (125)I-L2mAb was labeled directly. In vitro binding studies were performed using human derived cell lines with high, moderate, and low/undetectable TEM8 expression. (89)Zr-df-L2mAb in vitro autoradiography studies and CD31 IHC staining were performed with cryosections from human tumor xenografts (NCI-H460, DLD-1, MKN-45, U87-MG, T-47D, and A-431). Confirmatory TEM8 Western blots were performed with the same tumor types and cells. (89)Zr-df-L2mAb biodistribution and PET imaging studies were performed in NCI-H460 and DLD-1 xenografts in nude mice. (125)I-L2mAb and (89)Zr-df-L2mAb exhibited specific and high affinity binding to TEM8 that was consistent with TEM8 expression levels. In NCI-H460 and DLD-1 mouse xenografts nontarget tissue uptake of (89)Zr-df-L2mAb was similar; the liver and spleen exhibited the highest uptake at all time points. (89)Zr-L2mAb was highly retained in NCI-H460 tumors with <10% losses from day 1 to day 3 with the highest tumor to muscle ratios (T:M) occurring at day 3. DLD-1 tumors exhibited similar pharmacokinetics, but tumor uptake and T:M ratios were reduced ∼2-fold in comparison to NCI-H460 at all time points. NCI-H460 and DLD-1 tumors were easily visualized in PET imaging studies despite low in vitro TEM8 expression in DLD-1 cells indicating that in vivo expression might be higher in DLD-1 tumors. From in vitro autoradiography studies (89)Zr-df-L2mAb specific binding was found in 6 tumor types (U87-MG, NCI-H460, T-47D MKN-45, A-431, and DLD-1) which highly correlated to vessel density (CD31 IHC). Westerns blots confirmed the presence of TEM8 in the 6 tumor types but found undetectable TEM8 levels in DLD-1 and MKN-45 cells. This data would indicate that TEM8 is associated with the tumor vasculature rather than the tumor tissue, thus explaining the increased TEM8 expression in DLD-1 tumors compared to DLD-1 cell cultures. (89)Zr-df-L2mAb specifically targeted TEM8 in vitro and in vivo although the in vitro expression was not necessarily predictive of in vivo expression which seemed to be associated with the tumor vasculature. In mouse models, (89)Zr-df-L2mAb tumor uptakes and T:M ratios were sufficient for visualization during PET imaging. These results would suggest that a TEM8 targeted PET imaging agent, such as (89)Zr-df-L2mAb, may have potential clinical, diagnostic, and prognostic applications by providing a quantitative measure of tumor angiogenesis and patient selection for future TEM8 directed therapies.


Subject(s)
Antibodies, Monoclonal, Humanized , Neoplasm Proteins/immunology , Positron-Emission Tomography/methods , Radiopharmaceuticals , Receptors, Cell Surface/immunology , Zirconium , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacokinetics , Blotting, Western , Deferoxamine/administration & dosage , Deferoxamine/chemistry , Female , Humans , Immunoprecipitation , Mice , Mice, Nude , Microfilament Proteins , Molecular Imaging , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/diagnostic imaging , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Radiopharmaceuticals/pharmacokinetics , Receptors, Cell Surface/antagonists & inhibitors , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Zirconium/pharmacokinetics
7.
Tissue Eng Part C Methods ; 20(1): 64-75, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23730946

ABSTRACT

Hyperpermeable tumor vessels are responsible for elevated interstitial fluid pressure and altered flow patterns within the tumor microenvironment. These aberrant hydrodynamic stresses may enhance tumor development by stimulating the angiogenic activity of endothelial cells lining the tumor vasculature. However, it is currently not known to what extent shear forces affect endothelial organization or paracrine signaling during tumor angiogenesis. The objective of this study was to develop a three-dimensional (3D), in vitro microfluidic tumor vascular model for coculture of tumor and endothelial cells under varying flow shear stress conditions. A central microchannel embedded within a collagen hydrogel functions as a single neovessel through which tumor-relevant hydrodynamic stresses are introduced and quantified using microparticle image velocimetry (µ-PIV). This is the first use of µ-PIV in a tumor representative, 3D collagen matrix comprised of cylindrical microchannels, rather than planar geometries, to experimentally measure flow velocity and shear stress. Results demonstrate that endothelial cells develop a confluent endothelium on the microchannel lumen that maintains integrity under physiological flow shear stresses. Furthermore, this system provides downstream molecular analysis capability, as demonstrated by quantitative RT-PCR, in which, tumor cells significantly increase expression of proangiogenic genes in response to coculture with endothelial cells under low flow conditions. This work demonstrates that the microfluidic in vitro cell culture model can withstand a range of physiological flow rates and permit quantitative measurement of wall shear stress at the fluid-collagen interface using µ-PIV optical flow diagnostics, ultimately serving as a versatile platform for elucidating the role of fluid forces on tumor-endothelial cross talk.


Subject(s)
Collagen/pharmacology , Endothelial Cells/metabolism , Hydrogels/pharmacology , Microfluidic Analytical Techniques/methods , Neoplasms/blood supply , Rheology , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Endothelial Cells/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/metabolism , Neoplasms/pathology , Rats , Refractometry
8.
Tissue Eng Part C Methods ; 19(11): 864-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23516987

ABSTRACT

Although successful remission has been achieved when cancer is diagnosed and treated during its earliest stages of development, a tumor that has established neovascularization poses a significantly greater risk of mortality. The inability to recapitulate the complexities of a maturing in vivo tumor microenvironment in an in vitro setting has frustrated attempts to identify and test anti-angiogenesis therapies that are effective at permanently halting cancer progression. We have established an in vitro tumor angiogenesis model driven solely by paracrine signaling between MDA-MB-231 breast cancer cells and telomerase-immortalized human microvascular endothelial (TIME) cells co-cultured in a spatially relevant manner. The bilayered bioengineered tumor model consists of TIME cells cultured as an endothelium on the surface of an acellular collagen I hydrogel under which MDA-MB-231 cells are cultured in a separate collagen I hydrogel. Results showed that TIME cells co-cultured with the MDA-MB-231 cells demonstrated a significant increase in cell number, rapidly developed an elongated morphology, and invasively sprouted into the underlying acellular collagen I layer. Comparatively, bioengineered tumors cultured with less aggressive MCF7 breast cancer cells did not elicit an angiogenic response. Angiogenic sprouting was demonstrated by the formation of a complex capillary-like tubule network beneath the surface of a confluent endothelial monolayer with lumen formation and anastomosing branches. In vitro angiogenesis was dependent on vascular endothelial growth factor secretion, matrix concentration, and duration of co-culture. Basic fibroblast growth factor supplemented to the co-cultures augmented angiogenic sprouting. The development of improved preclinical tumor angiogenesis models, such as the one presented here, is critical for accurate evaluation and refinement of anti-angiogenesis therapies.


Subject(s)
Bioengineering , Coculture Techniques/methods , Collagen Type I/pharmacology , Endothelial Cells/pathology , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Neoplasms/pathology , Neovascularization, Physiologic/drug effects , Cell Count , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape , Collagen Type I/metabolism , Endothelial Cells/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fibroblast Growth Factor 2/pharmacology , Humans , Neoplasms/metabolism , Vascular Endothelial Growth Factor A/metabolism
9.
Biophys J ; 103(9): 2033-42, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23199931

ABSTRACT

Irreversible electroporation (IRE) is emerging as a powerful tool for tumor ablation that utilizes pulsed electric fields to destabilize the plasma membrane of cancer cells past the point of recovery. The ablated region is dictated primarily by the electric field distribution in the tissue, which forms the basis of current treatment planning algorithms. To generate data for refinement of these algorithms, there is a need to develop a physiologically accurate and reproducible platform on which to study IRE in vitro. Here, IRE was performed on a 3D in vitro tumor model consisting of cancer cells cultured within dense collagen I hydrogels, which have been shown to acquire phenotypes and respond to therapeutic stimuli in a manner analogous to that observed in in vivo pathological systems. Electrical and thermal fluctuations were monitored during treatment, and this information was incorporated into a numerical model for predicting the electric field distribution in the tumors. When correlated with Live/Dead staining of the tumors, an electric field threshold for cell death (500 V/cm) comparable to values reported in vivo was generated. In addition, submillimeter resolution was observed at the boundary between the treated and untreated regions, which is characteristic of in vivo IRE. Overall, these results illustrate the advantages of using 3D cancer cell culture models to improve IRE-treatment planning and facilitate widespread clinical use of the technology.


Subject(s)
Electroporation , Neoplasms, Experimental/therapy , Animals , Cell Death , Cell Line, Tumor , Collagen Type I , Electromagnetic Fields , Hydrogels , Mice , Phenotype , Temperature
10.
J Cell Biochem ; 113(4): 1142-51, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22095586

ABSTRACT

Reciprocal growth factor exchange between endothelial and malignant cells within the tumor microenvironment may directly stimulate neovascularization; however, the role of host vasculature in regulating tumor cell activity is not well understood. While previous studies have examined the angiogenic response of endothelial cells to tumor-secreted factors, few have explored tumor response to endothelial cells. Using an in vitro co-culture system, we investigated the influence of endothelial cells on the angiogenic phenotype of breast cancer cells. Specifically, VEGF, ANG1, and ANG2 gene and protein expression were assessed. When co-cultured with microvascular endothelial cells (HMEC-1), breast cancer cells (MDA-MB-231) significantly increased expression of ANG2 mRNA (20-fold relative to MDA-MB-231 monoculture). Moreover, MDA-MB-231/HMEC-1 co-cultures produced significantly increased levels of ANG2 (up to 580 pg/ml) and VEGF protein (up to 38,400 pg/ml) while ANG1 protein expression was decreased relative to MDA-MB-231 monocultures. Thus, the ratio of ANG1:ANG2 protein, a critical indicator of neovascularization, shifted in favor of ANG2, a phenomenon known to correlate with vessel destabilization and sprouting in vivo. This angiogenic response was not observed in nonmalignant breast epithelial cells (MCF-10A), where absolute protein levels of MCF-10A/HMEC-1 co-cultures were an order of magnitude less than that of the MDA-MB-231/HMEC-1 co-cultures. Results were further verified with a functional angiogenesis assay demonstrating well-defined microvascular endothelial cell (TIME) tube formation when cultured in media collected from MDA-MB-231/HMEC-1 co-cultures. This study demonstrates that the angiogenic activity of malignant mammary epithelial cells is significantly enhanced by the presence of endothelial cells.


Subject(s)
Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Breast Neoplasms/pathology , Endothelium, Vascular/cytology , Vascular Endothelial Growth Factor A/metabolism , Angiopoietin-1/genetics , Angiopoietin-2/genetics , Breast Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation , Coculture Techniques , Endothelium, Vascular/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/genetics
11.
Biomaterials ; 32(31): 7905-12, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21782234

ABSTRACT

Cells cultured within a three-dimensional (3D) in vitro environment have the ability to acquire phenotypes and respond to stimuli analogous to in vivo biological systems. This approach has been utilized in tissue engineering and can also be applied to the development of a physiologically relevant in vitro tumor model. In this study, collagen I hydrogels cultured with MDA-MB-231 human breast cancer cells were bioengineered as a platform for in vitro solid tumor development. The cell-cell and cell-matrix interactions present during in vivo tissue progression were encouraged within the 3D hydrogel architecture, and the biocompatibility of collagen I supported unconfined cellular proliferation. The development of necrosis beyond a depth of ~150-200 µm and the expression of hypoxia-inducible factor (HIF)-1α were demonstrated in the in vitro bioengineered tumors. Oxygen and nutrient diffusion limitations through the collagen I matrix as well as competition for available nutrients resulted in growing levels of intra-cellular hypoxia, quantified by a statistically significant (p < 0.01) upregulation of HIF-1α gene expression. The bioengineered tumors also demonstrated promising angiogenic potential with a statistically significant (p < 0.001) upregulation of vascular endothelial growth factor (VEGF)-A gene expression. In addition, comparable gene expression analysis demonstrated a statistically significant increase of HIF-1α (p < 0.05) and VEGF-A (p < 0.001) by MDA-MB-231 cells cultured in the 3D collagen I hydrogels compared to cells cultured in a monolayer on two-dimensional tissue culture polystyrene. The results presented in this study demonstrate the capacity of collagen I hydrogels to facilitate the development of 3D in vitro bioengineered tumors that are representative of the pre-vascularized stages of in vivo solid tumor progression.


Subject(s)
Bioengineering/methods , Cell Culture Techniques/methods , Collagen Type I/pharmacology , Hydrogels/pharmacology , Neoplasms, Experimental/pathology , Animals , Cell Death/drug effects , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
12.
Cancer Res ; 70(23): 9855-64, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21098701

ABSTRACT

This study demonstrates the capability of multiwalled carbon nanotubes (MWNTs) coupled with laser irradiation to enhance treatment of cancer cells through enhanced and more controlled thermal deposition, increased tumor injury, and diminished heat shock protein (HSP) expression. We also explored the potential promise of MWNTs as drug delivery agents by observing the degree of intracellular uptake of these nanoparticles. To determine the heat generation capability of MWNTs, the absorption spectra and temperature rise during heating were measured. Higher optical absorption was observed for MWNTs in water compared with water alone. For identical laser parameters, MWNT-containing samples produced a significantly greater temperature elevation compared to samples treated with laser alone. Human prostate cancer (PC3) and murine renal carcinoma (RENCA) cells were irradiated with a 1,064-nm laser with an irradiance of 15.3 W/cm(2) for 2 heating durations (1.5 and 5 minutes) alone or in combination with MWNT inclusion. Cytotoxicity and HSP expression following laser heating was used to determine the efficacy of laser treatment alone or in combination with MWNTs. No toxicity was observed for MWNTs alone. Inclusion of MWNTs dramatically decreased cell viability and HSP expression when combined with laser irradiation. MWNT cell internalization was measured using fluorescence and transmission electron microscopy following incubation of MWNTs with cells. With increasing incubation duration, a greater number of MWNTs were observed in cellular vacuoles and nuclei. These findings offer an initial proof of concept for the application of MWNTs in cancer therapy.


Subject(s)
Heat-Shock Proteins/metabolism , Hot Temperature , Lasers , Nanotubes, Carbon/analysis , Animals , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Cell Survival/radiation effects , Fluorescent Antibody Technique , HSP27 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Mice , Microscopy, Electron, Transmission , Nanotubes, Carbon/ultrastructure , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Spectrophotometry , Vacuoles/metabolism , Vacuoles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...