Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 18(9): 2014-2022, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37671411

ABSTRACT

Carrier-protein-dependent metabolic pathways biosynthesize fatty acids, polyketides, and non-ribosomal peptides, producing metabolites with important pharmaceutical, environmental, and industrial properties. Recent findings demonstrate that these pathways rely on selective communication mechanisms involving protein-protein interactions (PPIs) that guide enzyme reactivity and timing. While rational design of these PPIs could enable pathway design and modification, this goal remains a challenge due to the complex nature of protein interfaces. Computational methods offer an encouraging avenue, though many score functions fail to predict experimental observables, leading to low success rates. Here, we improve upon the Rosetta score function, leveraging experimental data through iterative rounds of computational prediction and mutagenesis, to design a hybrid fatty acid-non-ribosomal peptide initiation pathway. By increasing the weight of the electrostatic score term, the computational protocol proved to be more predictive, requiring fewer rounds of iteration to identify mutants with high in vitro activity. This allowed efficient design of new PPIs between a non-ribosomal peptide synthetase adenylation domain, PltF, and a fatty acid synthase acyl carrier protein, AcpP, as validated by activity and structural studies. This method provides a promising platform for customized pathway design, establishing a standard for carrier-protein-dependent pathway engineering through PPI optimization.


Subject(s)
Acyl Carrier Protein , Carrier Proteins , Excipients , Fatty Acid Synthases , Fatty Acids , Metabolic Networks and Pathways
2.
Int J High Perform Comput Appl ; 37(1): 28-44, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36647365

ABSTRACT

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.

3.
Biochemistry ; 61(7): 608-615, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35255690

ABSTRACT

Carrier protein-dependent biosynthesis provides a thiotemplated format for the production of natural products. Within these pathways, many reactions display exquisite substrate selectivity, a regulatory framework proposed to be controlled by protein-protein interactions (PPIs). In Escherichia coli, unsaturated fatty acids are generated within the de novo fatty acid synthase by a chain length-specific interaction between the acyl carrier protein AcpP and the isomerizing dehydratase FabA. To evaluate PPI-based control of reactivity, interactions of FabA with AcpP bearing multiple sequestered substrates were analyzed through NMR titration and guided high-resolution docking. Through a combination of quantitative binding constants, residue-specific perturbation analysis, and high-resolution docking, a model for substrate control via PPIs has been developed. The in silico results illuminate the mechanism of FabA substrate selectivity and provide a structural rationale with atomic detail. Helix III positioning in AcpP communicates sequestered chain length identity recognized by FabA, demonstrating a powerful strategy to regulate activity by allosteric control. These studies broadly illuminate carrier protein-dependent pathways and offer an important consideration for future inhibitor design and pathway engineering.


Subject(s)
Acyl Carrier Protein , Fatty Acid Synthase, Type II , Fatty Acids , Hydro-Lyases , Acyl Carrier Protein/metabolism , Escherichia coli/enzymology , Fatty Acid Synthase, Type II/metabolism , Fatty Acids/biosynthesis , Fatty Acids, Unsaturated/metabolism , Hydro-Lyases/metabolism
4.
bioRxiv ; 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34816263

ABSTRACT

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized. ACM REFERENCE FORMAT: Abigail Dommer 1† , Lorenzo Casalino 1† , Fiona Kearns 1† , Mia Rosenfeld 1 , Nicholas Wauer 1 , Surl-Hee Ahn 1 , John Russo, 2 Sofia Oliveira 3 , Clare Morris 1 , AnthonyBogetti 4 , AndaTrifan 5,6 , Alexander Brace 5,7 , TerraSztain 1,8 , Austin Clyde 5,7 , Heng Ma 5 , Chakra Chennubhotla 4 , Hyungro Lee 9 , Matteo Turilli 9 , Syma Khalid 10 , Teresa Tamayo-Mendoza 11 , Matthew Welborn 11 , Anders Christensen 11 , Daniel G. A. Smith 11 , Zhuoran Qiao 12 , Sai Krishna Sirumalla 11 , Michael O'Connor 11 , Frederick Manby 11 , Anima Anandkumar 12,13 , David Hardy 6 , James Phillips 6 , Abraham Stern 13 , Josh Romero 13 , David Clark 13 , Mitchell Dorrell 14 , Tom Maiden 14 , Lei Huang 15 , John McCalpin 15 , Christo- pherWoods 3 , Alan Gray 13 , MattWilliams 3 , Bryan Barker 16 , HarindaRajapaksha 16 , Richard Pitts 16 , Tom Gibbs 13 , John Stone 6 , Daniel Zuckerman 2 *, Adrian Mulholland 3 *, Thomas MillerIII 11,12 *, ShantenuJha 9 *, Arvind Ramanathan 5 *, Lillian Chong 4 *, Rommie Amaro 1 *. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing '21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis . ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI.

5.
RSC Chem Biol ; 2(5): 1466-1473, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34704050

ABSTRACT

Lipoic acid is an essential cofactor produced in all organisms by diverting octanoic acid derived as an intermediate of type II fatty acid biosynthesis. In bacteria, octanoic acid is transferred from the acyl carrier protein (ACP) to the lipoylated target protein by the octanoyltransferase LipB. LipB has a well-documented substrate selectivity, indicating a mechanism of octanoic acid recognition. The present study reveals the precise protein-protein interactions (PPIs) responsible for this selectivity in Escherichia coli through a combination of solution-state protein NMR titration with high-resolution docking of the experimentally examined substrates. We examine the structural changes of substrate-bound ACP and determine the precise geometry of the LipB interface. Thermodynamic effects from varying substrates were observed by NMR, and steric occlusion of docked models indicates how LipB interprets proper substrate identity via allosteric binding. This study provides a model for elucidating how substrate identity is transferred through the ACP structure to regulate activity in octanoyl transferases.

6.
Nat Chem ; 13(10): 963-968, 2021 10.
Article in English | MEDLINE | ID: mdl-34413500

ABSTRACT

SARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded 'down' to an exposed 'up' state to bind the human angiotensin-converting enzyme 2 receptor and infect cells. While snapshots of the 'up' and 'down' states have been obtained by cryo-electron microscopy and cryo-electron tomagraphy, details of the RBD-opening transition evade experimental characterization. Here over 130 µs of weighted ensemble simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD-opening pathways. Together with ManifoldEM analysis of cryo-electron microscopy data and biolayer interferometry experiments, we reveal a gating role for the N-glycan at position N343, which facilitates RBD opening. Residues D405, R408 and D427 also participate. The atomic-level characterization of the glycosylated spike activation mechanism provided herein represents a landmark study for ensemble pathway simulations and offers a foundation for understanding the fundamental mechanisms of SARS-CoV-2 viral entry and infection.


Subject(s)
Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Cryoelectron Microscopy , Humans , Molecular Dynamics Simulation
7.
J Chem Inf Model ; 61(7): 3495-3501, 2021 07 26.
Article in English | MEDLINE | ID: mdl-33939913

ABSTRACT

The SARS-CoV-2 pandemic has rapidly spread across the globe, posing an urgent health concern. Many quests to computationally identify treatments against the virus rely on in silico small molecule docking to experimentally determined structures of viral proteins. One limit to these approaches is that protein dynamics are often unaccounted for, leading to overlooking transient, druggable conformational states. Using Gaussian accelerated molecular dynamics to enhance sampling of conformational space, we identified cryptic pockets within the SARS-CoV-2 main protease, including some within regions far from the active site. These simulations sampled comparable dynamics and pocket volumes to conventional brute force simulations carried out on two orders of magnitude greater timescales.


Subject(s)
COVID-19 , SARS-CoV-2 , Catalytic Domain , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors , Viral Proteins
8.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33846262

ABSTRACT

Enzymes in multistep metabolic pathways utilize an array of regulatory mechanisms to maintain a delicate homeostasis [K. Magnuson, S. Jackowski, C. O. Rock, J. E. Cronan, Jr, Microbiol. Rev. 57, 522-542 (1993)]. Carrier proteins in particular play an essential role in shuttling substrates between appropriate enzymes in metabolic pathways. Although hypothesized [E. Ploskon et al., Chem. Biol. 17, 776-785 (2010)], allosteric regulation of substrate delivery has never before been demonstrated for any acyl carrier protein (ACP)-dependent pathway. Studying these mechanisms has remained challenging due to the transient and dynamic nature of protein-protein interactions, the vast diversity of substrates, and substrate instability [K. Finzel, D. J. Lee, M. D. Burkart, ChemBioChem 16, 528-547 (2015)]. Here we demonstrate a unique communication mechanism between the ACP and partner enzymes using solution NMR spectroscopy and molecular dynamics to elucidate allostery that is dependent on fatty acid chain length. We demonstrate that partner enzymes can allosterically distinguish between chain lengths via protein-protein interactions as structural features of substrate sequestration are translated from within the ACP four-helical bundle to the protein surface, without the need for stochastic chain flipping. These results illuminate details of cargo communication by the ACP that can serve as a foundation for engineering carrier protein-dependent pathways for specific, desired products.


Subject(s)
Acyl Carrier Protein/metabolism , Acyl Carrier Protein/ultrastructure , Allosteric Regulation/physiology , Acyl Carrier Protein/physiology , Amino Acid Sequence , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Magnetic Resonance Spectroscopy/methods , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Protein Conformation , Protein Interaction Domains and Motifs/physiology , Protein Interaction Maps/physiology
9.
Commun Biol ; 4(1): 340, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727677

ABSTRACT

Fatty acid biosynthesis (FAB) is an essential and highly conserved metabolic pathway. In bacteria, this process is mediated by an elaborate network of protein•protein interactions (PPIs) involving a small, dynamic acyl carrier protein that interacts with dozens of other partner proteins (PPs). These PPIs have remained poorly characterized due to their dynamic and transient nature. Using a combination of solution-phase NMR spectroscopy and protein-protein docking simulations, we report a comprehensive residue-by-residue comparison of the PPIs formed during FAB in Escherichia coli. This technique describes and compares the molecular basis of six discrete binding events responsible for E. coli FAB and offers insights into a method to characterize these events and those in related carrier protein-dependent pathways.


Subject(s)
Acyl Carrier Protein/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Fatty Acid Synthase, Type II/metabolism , Fatty Acids/biosynthesis , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Acetyltransferases/metabolism , Alcohol Oxidoreductases/metabolism , Binding Sites , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Lysophospholipase/metabolism , Molecular Docking Simulation , Periplasmic Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Proton Magnetic Resonance Spectroscopy
10.
bioRxiv ; 2021 May 17.
Article in English | MEDLINE | ID: mdl-33619492

ABSTRACT

SARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded "down" to an exposed "up" state in order to bind the human ACE2 receptor and infect cells. While snapshots of the "up" and "down" states have been obtained by cryoEM and cryoET, details of the RBD opening transition evade experimental characterization. Here, over 130 µs of weighted ensemble (WE) simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD opening pathways. Together with ManifoldEM analysis of cryo-EM data and biolayer interferometry experiments, we reveal a gating role for the N-glycan at position N343, which facilitates RBD opening. Residues D405, R408, and D427 also participate. The atomic-level characterization of the glycosylated spike activation mechanism provided herein achieves a new high-water mark for ensemble pathway simulations and offers a foundation for understanding the fundamental mechanisms of SARS-CoV-2 viral entry and infection.

11.
Int J High Perform Comput Appl ; 35(5): 432-451, 2021 Sep.
Article in English | MEDLINE | ID: mdl-38603008

ABSTRACT

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike's full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems.

12.
bioRxiv ; 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33236007

ABSTRACT

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike's full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems.

13.
bioRxiv ; 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32743587

ABSTRACT

The SARS-CoV-2 pandemic has rapidly spread across the globe, posing an urgent health concern. Many quests to computationally identify treatments against the virus rely on in silico small molecule docking to experimentally determined structures of viral proteins. One limit to these approaches is that protein dynamics are often unaccounted for, leading to overlooking transient, druggable conformational states. Using Gaussian accelerated molecular dynamics to enhance sampling of conformational space, we identified cryptic pockets within the SARS-CoV-2 main protease, including some within regions far from the active site and assed their druggability. These pockets can aid in virtual screening efforts to identify a protease inhibitor for the treatment of COVID-19.

14.
Biochemistry ; 58(34): 3557-3560, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31397556

ABSTRACT

Acyl carrier proteins (ACP)s transport intermediates through many primary and secondary metabolic pathways. Studying the effect of substrate identity on ACP structure has been hindered by the lability of the thioester bond that attaches acyl substrates to the 4'-phosphopantetheine cofactor of ACP. Here we show that an acyl acyl-carrier protein synthetase (AasS) can be used in real time to shift the hydrolysis equilibrium toward favoring acyl-ACP during solution NMR spectroscopy. Only 0.005 molar equivalents of AasS enables 1 week of stability to palmitoyl-AcpP from Escherichia coli. 2D NMR spectra enabled with this method revealed that the tethered palmitic acid perturbs nearly every secondary structural region of AcpP. This technique will allow previously unachievable structural studies of unstable acyl-ACP species, contributing to the understanding of these complex biosynthetic pathways.


Subject(s)
Acyl Carrier Protein/metabolism , Pantetheine/analogs & derivatives , Escherichia coli/metabolism , Hydrolysis , Pantetheine/metabolism , Protein Conformation
15.
Angew Chem Int Ed Engl ; 58(32): 10888-10892, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31140212

ABSTRACT

At the center of many complex biosynthetic pathways, the acyl carrier protein (ACP) shuttles substrates to appropriate enzymatic partners to produce fatty acids and polyketides. Carrier proteins covalently tether their cargo via a thioester linkage to a phosphopantetheine cofactor. Due to the labile nature of this linkage, chemoenzymatic methods have been developed that involve replacement of the thioester with a more stable amide or ester bond. We explored the importance of the thioester bond to the structure of the carrier protein by using solution NMR spectroscopy and molecular dynamics simulations. Remarkably, the replacement of sulfur with other heteroatoms results in significant structural changes, thus suggesting more rigorous selections of isosteric substitutes is needed.


Subject(s)
Carrier Proteins/chemistry , Esters/chemistry , Sulfhydryl Compounds/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Molecular Structure
16.
Int J Cancer ; 143(10): 2470-2478, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30006924

ABSTRACT

In the last decade, it has become clear that epigenetic changes act together with genetic mutations to promote virtually every stage of tumorigenesis and cancer progression. This knowledge has triggered searches for "epigenetic drugs" that can be developed into new cancer therapies. Here we report that triptolide reduced lung cancer incidence from 70% to 10% in a Fen1 E160D transgenic mouse model and effectively inhibited cancer growth and metastasis in A549 and H460 mouse xenografts. We found that triptolide induced lung cancer cell apoptosis that was associated with global epigenetic changes to histone 3 (H3). These global epigenetic changes in H3 are correlated with an increase in protein expression of five Wnt inhibitory factors that include WIF1, FRZB, SFRP1, ENY2, and DKK1. Triptolide had no effect on DNA methylation status at any of the CpG islands located in the promoter regions of all five Wnt inhibitory factors. Wnt expression is implicated in promoting the development and progression of many lung cancers. Because of this, the potential to target Wnt signaling with drugs that induce epigenetic modifications provides a new avenue for developing novel therapies for patients with these tumor types.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Diterpenes/pharmacology , Histones/genetics , Lung Neoplasms/drug therapy , Phenanthrenes/pharmacology , Wnt Signaling Pathway/drug effects , A549 Cells , Animals , Antineoplastic Agents, Alkylating/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Epigenesis, Genetic , Epoxy Compounds/pharmacology , Histones/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred NOD , Mice, SCID , Up-Regulation , Xenograft Model Antitumor Assays
17.
J Microbiol Methods ; 102: 1-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24769406

ABSTRACT

Asphalts, biochemically degraded oil, contain persistent, water-soluble compounds that pose a significant challenge to the isolation of PCR quality DNA. The adaptation of existing DNA purification protocols and commercial kits proved unsuccessful at overcoming this hurdle. Treatment of aqueous asphalt extracts with a polyamide resin afforded genomic microbial DNA templates that could readily be amplified by PCR. Physicochemically distinct asphalt samples from five natural oil seeps successfully generated the expected 291 bp amplicons targeting a region of the 16S rRNA gene, illustrating the robustness of the method. DNA recovery yields were in the 50-80% range depending on how the asphalt sample was seeded with exogenous DNA. The scope of the new method was expanded to include soil with high humic acid content. DNA from soil samples spiked with a range of humic acid concentrations was extracted with a commercial kit followed by treatment with the polyamide resin. The additional step significantly improved the purity of the DNA templates, especially at high humic acid concentrations, based on qPCR analysis of the bacterial 16S rRNA genes. The new method has the advantages of being inexpensive, simple, and rapid and should provide a valuable addition to protocols in the field of petroleum and soil microbiology.


Subject(s)
DNA/isolation & purification , Genomics/methods , Polymerase Chain Reaction/methods , Soil Microbiology , Costs and Cost Analysis , Environmental Pollution , Enzyme Inhibitors/isolation & purification , Nylons/chemistry , RNA, Ribosomal, 16S/genetics , Soil Pollutants/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...