Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Clin Invest ; 134(16)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888968

ABSTRACT

Tolerance of mouse kidney allografts arises in grafts that develop regulatory tertiary lymphoid organs (rTLOs). Single-cell RNA-seq (scRNA-seq) data and adoptive transfer of alloreactive T cells after transplantation showed that cytotoxic CD8+ T cells are reprogrammed within the accepted graft to an exhausted/regulatory-like phenotype mediated by IFN-γ. Establishment of rTLOs was required because adoptive transfer of alloreactive T cells prior to transplantation results in kidney allograft rejection. Despite the presence of intragraft CD8+ cells with a regulatory phenotype, they were not essential for the induction and maintenance of kidney allograft tolerance since renal allotransplantation into CD8-KO recipients resulted in acceptance and not rejection. Analysis of scRNA-seq data from allograft kidneys and malignant tumors identified similar regulatory-like cell types within the T cell clusters and trajectory analysis showed that cytotoxic CD8+ T cells are reprogrammed into an exhausted/regulatory-like phenotype intratumorally. Induction of cytotoxic CD8+ T cell dysfunction of infiltrating cells appears to be a beneficial mechanistic pathway that protects the kidney allotransplant from rejection through a process we call "defensive tolerance." This pathway has implications for our understanding of allotransplant tolerance and tumor resistance to host immunity.


Subject(s)
Kidney Transplantation , Transplantation Tolerance , Animals , Mice , Transplantation Tolerance/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes, Cytotoxic/immunology , Mice, Knockout , Graft Rejection/immunology , Graft Rejection/pathology , Allografts/immunology , Interferon-gamma/immunology , Interferon-gamma/genetics , Interferon-gamma/metabolism
2.
Am J Transplant ; 23(9): 1319-1330, 2023 09.
Article in English | MEDLINE | ID: mdl-37295719

ABSTRACT

Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.


Subject(s)
B-Lymphocytes, Regulatory , Mice , Animals , Transcriptome , Mice, Inbred C57BL , Mice, Inbred DBA , Kidney , Allografts , Cell Differentiation , Graft Rejection/etiology , Graft Survival
3.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32938831

ABSTRACT

In swine and nonhuman primates, kidney allografts can induce tolerance of heart allografts, leading to their long-term, immunosuppression-free survival. We refer to this phenomenon as kidney-induced cardiac allograft tolerance (KICAT). In this study, we have developed a murine model for KICAT to determine the underlining cellular/molecular mechanisms. Here, we show that spontaneously accepted DBA/2J kidneys in C57BL/6 recipients induce systemic tolerance that results in the long-term acceptance of DBA/2J heart allografts but not third-party cardiac allografts. The state of systemic tolerance of hearts was established 2 weeks after transplantation of the kidney, after which time, the kidney allograft is no longer required. Depletion of Foxp3+ T cells from these mice precipitated rejection of the heart allografts, indicating that KICAT is dependent on Treg function. Acceptance of kidney allografts and cotransplanted heart allografts did not require the thymus. In conclusion, these data show that kidney allografts induce systemic, donor-specific tolerance of cardiac allografts via Foxp3 cells, and that tolerance is independent of the thymus and continued presence of the kidney allograft. This experimental system should promote increased understanding of the tolerogenic mechanisms of the kidney.


Subject(s)
Forkhead Transcription Factors/metabolism , Graft Rejection/prevention & control , Heart Transplantation/adverse effects , Immune Tolerance/immunology , Kidney/physiology , T-Lymphocytes, Regulatory/immunology , Transplantation Tolerance , Animals , Graft Rejection/etiology , Graft Rejection/pathology , Graft Survival , Immunosuppression Therapy , Kidney Transplantation , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA
SELECTION OF CITATIONS
SEARCH DETAIL