Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(5): 114250, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762882

ABSTRACT

Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.

2.
Glia ; 72(2): 375-395, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37909242

ABSTRACT

White matter abnormalities, related to poor cerebral perfusion, are a core feature of small vessel cerebrovascular disease, and critical determinants of vascular cognitive impairment and dementia. Despite this importance there is a lack of treatment options. Proliferation of microglia producing an expanded, reactive population and associated neuroinflammatory alterations have been implicated in the onset and progression of cerebrovascular white matter disease, in patients and in animal models, suggesting that targeting microglial proliferation may exert protection. Colony-stimulating factor-1 receptor (CSF1R) is a key regulator of microglial proliferation. We found that the expression of CSF1R/Csf1r and other markers indicative of increased microglial abundance are significantly elevated in damaged white matter in human cerebrovascular disease and in a clinically relevant mouse model of chronic cerebral hypoperfusion and vascular cognitive impairment. Using the mouse model, we investigated long-term pharmacological CSF1R inhibition, via GW2580, and demonstrated that the expansion of microglial numbers in chronic hypoperfused white matter is prevented. Transcriptomic analysis of hypoperfused white matter tissue showed enrichment of microglial and inflammatory gene sets, including phagocytic genes that were the predominant expression modules modified by CSF1R inhibition. Further, CSF1R inhibition attenuated hypoperfusion-induced white matter pathology and rescued spatial learning impairments and to a lesser extent cognitive flexibility. Overall, this work suggests that inhibition of CSF1R and microglial proliferation mediates protection against chronic cerebrovascular white matter pathology and cognitive deficits. Our study nominates CSF1R as a target for the treatment of vascular cognitive disorders with broader implications for treatment of other chronic white matter diseases.


Subject(s)
Cerebrovascular Disorders , Cognition Disorders , Cognitive Dysfunction , Leukoencephalopathies , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , White Matter , Animals , Mice , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/pathology , Cognition Disorders/etiology , Cognition Disorders/pathology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Leukoencephalopathies/genetics , Leukoencephalopathies/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Receptors, Colony-Stimulating Factor/metabolism , White Matter/pathology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
3.
Elife ; 122023 12 12.
Article in English | MEDLINE | ID: mdl-38085657

ABSTRACT

Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aß) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aß burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.


Subject(s)
Alzheimer Disease , Cystatins , Neurodegenerative Diseases , Animals , Female , Humans , Male , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Cystatins/metabolism , Disease Models, Animal , Mice, Transgenic , Microglia/metabolism , Neurodegenerative Diseases/pathology
4.
Cereb Circ Cogn Behav ; 5: 100189, 2023.
Article in English | MEDLINE | ID: mdl-37941765

ABSTRACT

Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.

5.
Nature ; 613(7942): 120-129, 2023 01.
Article in English | MEDLINE | ID: mdl-36517604

ABSTRACT

Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFß1-TGFßR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.


Subject(s)
Central Nervous System , Microglia , Myelin Sheath , Adult , Animals , Humans , Mice , Axons/metabolism , Central Nervous System/cytology , Central Nervous System/metabolism , Central Nervous System/pathology , Microglia/cytology , Microglia/metabolism , Microglia/pathology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Cognition , Transforming Growth Factor beta1/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Lipid Metabolism , Aging/metabolism , Aging/pathology
6.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35333324

ABSTRACT

Amino acid substitutions in the kinase domain of the human CSF1R gene are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (pGlu631Lys; E631K) in the mouse Csf1r locus. Homozygous mutation (Csf1rE631K/E631K) phenocopied the Csf1r knockout, with prenatal mortality or severe postnatal growth retardation and hydrocephalus. Heterozygous mutation delayed the postnatal expansion of tissue macrophage populations in most organs. Bone marrow cells from Csf1rE631K/+mice were resistant to CSF1 stimulation in vitro, and Csf1rE631K/+ mice were unresponsive to administration of a CSF1-Fc fusion protein, which expanded tissue macrophage populations in controls. In the brain, microglial cell numbers and dendritic arborisation were reduced in Csf1rE631K/+ mice, as in patients with ALSP. The microglial phenotype is the opposite of microgliosis observed in Csf1r+/- mice. However, we found no evidence of brain pathology or impacts on motor function in aged Csf1rE631K/+ mice. We conclude that heterozygous disease-associated CSF1R mutations compromise CSF1R signalling. We speculate that leukoencephalopathy associated with dominant human CSF1R mutations requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles.


Subject(s)
Leukoencephalopathies , Neurodegenerative Diseases , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Humans , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Mice , Mutation/genetics , Neurodegenerative Diseases/pathology , Neuroglia , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
7.
J Cereb Blood Flow Metab ; 40(7): 1402-1414, 2020 07.
Article in English | MEDLINE | ID: mdl-32151228

ABSTRACT

Assessment of outcome in preclinical studies of vascular cognitive impairment (VCI) is heterogenous. Through an ARUK Scottish Network supported questionnaire and workshop (mostly UK-based researchers), we aimed to determine underlying variability and what could be implemented to overcome identified challenges. Twelve UK VCI research centres were identified and invited to complete a questionnaire and attend a one-day workshop. Questionnaire responses demonstrated agreement that outcome assessments in VCI preclinical research vary by group and even those common across groups, may be performed differently. From the workshop, six themes were discussed: issues with preclinical models, reasons for choosing functional assessments, issues in interpretation of functional assessments, describing and reporting functional outcome assessments, sharing resources and expertise, and standardization of outcomes. Eight consensus points emerged demonstrating broadly that the chosen assessment should reflect the deficit being measured, and therefore that one assessment does not suit all models; guidance/standardisation on recording VCI outcome reporting is needed and that uniformity would be aided by a platform to share expertise, material, protocols and procedures thus reducing heterogeneity and so increasing potential for collaboration, comparison and replication. As a result of the workshop, UK wide consensus statements were agreed and future priorities for preclinical research identified.


Subject(s)
Dementia, Vascular , Disease Models, Animal , Research Design/standards , Animals , Consensus , Recovery of Function , Surveys and Questionnaires , United Kingdom
8.
Glia ; 66(1): 34-46, 2018 01.
Article in English | MEDLINE | ID: mdl-28722234

ABSTRACT

Chronic cerebral hypoperfusion is a key mechanism associated with white matter disruption in cerebral vascular disease and dementia. In a mouse model relevant to studying cerebral vascular disease, we have previously shown that cerebral hypoperfusion disrupts axon-glial integrity and the distribution of key paranodal and internodal proteins in subcortical myelinated axons. This disruption of myelinated axons is accompanied by increased microglia and cognitive decline. The aim of the present study was to investigate whether hypoperfusion impairs the functional integrity of white matter, its relation with axon-glial integrity and microglial number, and whether by targeting microglia these effects can be improved. We show that in response to increasing durations of hypoperfusion, the conduction velocity of myelinated fibres in the corpus callosum is progressively reduced and that paranodal and internodal axon-glial integrity is disrupted. The number of microglial cells increases in response to hypoperfusion and correlates with disrupted paranodal and internodal integrity and reduced conduction velocities. Further minocycline, a proposed anti-inflammatory and microglia inhibitor, restores white matter function related to a reduction in the number of microglia. The study suggests that microglial activation contributes to the structural and functional alterations of myelinated axons induced by cerebral hypoperfusion and that dampening microglia numbers/proliferation should be further investigated as potential therapeutic benefit in cerebral vascular disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Carotid Stenosis , Gliosis/drug therapy , Gliosis/etiology , Microglia/drug effects , Minocycline/therapeutic use , White Matter/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Animals , Arginase/genetics , Arginase/metabolism , Axons/pathology , Carotid Stenosis/complications , Carotid Stenosis/drug therapy , Carotid Stenosis/pathology , Corpus Callosum/drug effects , Corpus Callosum/pathology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Ki-67 Antigen/metabolism , Male , Mice , Mice, Inbred C57BL , Myelin-Associated Glycoprotein/metabolism , Nerve Fibers/drug effects , Nerve Fibers/physiology , White Matter/pathology , White Matter/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...