Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(22): 4106-4122.e10, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37977120

ABSTRACT

γ-Secretases mediate the regulated intramembrane proteolysis (RIP) of more than 150 integral membrane proteins. We developed an unbiased γ-secretase substrate identification (G-SECSI) method to study to what extent these proteins are processed in parallel. We demonstrate here parallel processing of at least 85 membrane proteins in human microglia in steady-state cell culture conditions. Pharmacological inhibition of γ-secretase caused substantial changes of human microglial transcriptomes, including the expression of genes related to the disease-associated microglia (DAM) response described in Alzheimer disease (AD). While the overall effects of γ-secretase deficiency on transcriptomic cell states remained limited in control conditions, exposure of mouse microglia to AD-inducing amyloid plaques strongly blocked their capacity to mount this putatively protective DAM cell state. We conclude that γ-secretase serves as a critical signaling hub integrating the effects of multiple extracellular stimuli into the overall transcriptome of the cell.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Mice , Animals , Humans , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Proteome/genetics , Signal Transduction , Membrane Proteins/metabolism , Alzheimer Disease/genetics
2.
Science ; 381(6663): 1176-1182, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37708272

ABSTRACT

Neuronal cell loss is a defining feature of Alzheimer's disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.


Subject(s)
Alzheimer Disease , Necroptosis , Neurons , RNA, Long Noncoding , Animals , Humans , Mice , Alzheimer Disease/pathology , Heterografts , Necroptosis/genetics , Neurons/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
3.
J Biol Chem ; 299(6): 104794, 2023 06.
Article in English | MEDLINE | ID: mdl-37164155

ABSTRACT

Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1-APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future.


Subject(s)
Amyloid Precursor Protein Secretases , Multiprotein Complexes , Presenilin-1 , Sulfonamides , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Presenilin-1/antagonists & inhibitors , Presenilin-1/metabolism , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Sulfonamides/pharmacology , Substrate Specificity , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/metabolism
4.
Mol Neurodegener ; 15(1): 60, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33076948

ABSTRACT

BACKGROUND: Three amino acid differences between rodent and human APP affect medically important features, including ß-secretase cleavage of APP and Aß peptide aggregation (De Strooper et al., EMBO J 14:4932-38, 1995; Ueno et al., Biochemistry 53:7523-30, 2014; Bush, 2003, Trends Neurosci 26:207-14). Most rodent models for Alzheimer's disease (AD) are, therefore, based on the human APP sequence, expressed from artificial mini-genes randomly inserted in the rodent genome. While these models mimic rather well various biochemical aspects of the disease, such as Aß-aggregation, they are also prone to overexpression artifacts and to complex phenotypical alterations, due to genes affected in or close to the insertion site(s) of the mini-genes (Sasaguri et al., EMBO J 36:2473-87, 2017; Goodwin et al., Genome Res 29:494-505, 2019). Knock-in strategies which introduce clinical mutants in a humanized endogenous rodent APP sequence (Saito et al., Nat Neurosci 17:661-3, 2014) represent useful improvements, but need to be compared with appropriate humanized wildtype (WT) mice. METHODS: Computational modelling of the human ß-CTF bound to BACE1 was used to study the differential processing of rodent and human APP. We humanized the three pivotal residues we identified G676R, F681Y and R684H (labeled according to the human APP770 isoform) in the mouse and rat genomes using a CRISPR-Cas9 approach. These new models, termed mouse and rat Apphu/hu, express APP from the endogenous promotor. We also introduced the early-onset familial Alzheimer's disease (FAD) mutation M139T into the endogenous Rat Psen1 gene. RESULTS: We show that introducing these three amino acid substitutions into the rodent sequence lowers the affinity of the APP substrate for BACE1 cleavage. The effect on ß-secretase processing was confirmed as both humanized rodent models produce three times more (human) Aß compared to the original WT strain. These models represent suitable controls, or starting points, for studying the effect of transgenes or knock-in mutations on APP processing (Saito et al., Nat Neurosci 17:661-3, 2014). We introduced the early-onset familial Alzheimer's disease (FAD) mutation M139T into the endogenous Rat Psen1 gene and provide an initial characterization of Aß processing in this novel rat AD model. CONCLUSION: The different humanized APP models (rat and mouse) expressing human Aß and PSEN1 M139T are valuable controls to study APP processing in vivo allowing the use of a human Aß ELISA which is more sensitive than the equivalent system for rodents. These animals will be made available to the research community.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor , Computer Simulation , Disease Models, Animal , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Humans , Mice , Presenilin-1/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...