Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsia Open ; 8(1): 211-216, 2023 03.
Article in English | MEDLINE | ID: mdl-36504316

ABSTRACT

Fetal intracranial hemorrhage represents a rare event with an estimated prevalence of 1:10 000 pregnancies. We report a patient diagnosed prenatally with intracranial hemorrhage and ventriculomegaly carrying a novel, previously unreported, likely pathogenic variant in COL4A1. At the gestational age of 27 weeks, dilation of lateral ventricles was detected during a routine prenatal ultrasound scan, confirmed by prenatal MRI at 30 + 3 weeks of gestation. Prenatal examinations included amniocentesis with conventional G-band karyotyping and arrayCGH, and maternal testing for TORCH and parvovirus B19 infections. Virtual gene panel based on whole-exome sequencing data was performed postnatally. At the age of 2.5 months, the patient manifested epileptic seizures that remain difficult to control. Postnatal MRI showed partial thalamic fusion and polymicrogyria, in addition to severe enlargement of lateral ventricles, multiple deposits of hemosiderin in cerebral and cerebellar hemispheres, and thin optic nerve and chiasma. Virtual gene panel based on whole-exome sequencing data led to a detection of a de novo previously unreported in-frame deletion NM_001845.5:c.4688_4711del in COL4A1 located in the highly conserved NC1 domain initiating collagen helix assembly. The presented case lies one a more severe end of the COL4A1 mutation-related disease spectrum, manifesting as fetal intracranial bleeding, malformation of cortical development, drug-resistant epilepsy, and developmental delay.


Subject(s)
Hydrocephalus , Polymicrogyria , Pregnancy , Female , Humans , Infant , Polymicrogyria/genetics , Mutation , Intracranial Hemorrhages , Fetus , Collagen Type IV/genetics
3.
Acta Neuropathol Commun ; 10(1): 143, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163281

ABSTRACT

Gliomas are the most common central nervous tumors in children and adolescents. However, spinal cord low-grade gliomas (sLGGs) are rare, with scarce information on tumor genomics and epigenomics. To define the molecular landscape of sLGGs, we integrated clinical data, histology, and multi-level genetic and epigenetic analyses on a consecutive cohort of 26 pediatric patients. Driver molecular alteration was found in 92% of patients (24/26). A novel variant of KIAA1549:BRAF fusion (ex10:ex9) was identified using RNA-seq in four cases. Importantly, only one-third of oncogenic drivers could be revealed using standard diagnostic methods, and two-thirds of pediatric patients with sLGGs required extensive molecular examination. The majority (23/24) of detected alterations were potentially druggable targets. Four patients in our cohort received targeted therapy with MEK or NTRK inhibitors. Three of those exhibited clinical improvement (two with trametinib, one with larotrectinib), and two patients achieved partial response. Methylation profiling was implemented to further refine the diagnosis and revealed intertumoral heterogeneity in sLGGs. Although 55% of tumors clustered with pilocytic astrocytoma, other rare entities were identified in this patient population. In particular, diffuse leptomeningeal glioneuronal tumors (n = 3) and high-grade astrocytoma with piloid features (n = 1) and pleomorphic xanthoastrocytoma (n = 1) were present. A proportion of tumors (14%) had no match with the current version of the classifier. Complex molecular genetic sLGGs characterization was invaluable to refine diagnosis, which has proven to be essential in such a rare tumor entity. Moreover, identifying a high proportion of drugable targets in sLGGs opened an opportunity for new treatment modalities.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Spinal Cord Neoplasms , Adolescent , Astrocytoma/genetics , Brain Neoplasms/genetics , Child , Genomics , Glioma/genetics , Glioma/pathology , Humans , Mitogen-Activated Protein Kinase Kinases , Proto-Oncogene Proteins B-raf/genetics , Spinal Cord Neoplasms/genetics
4.
Acta Neurochir (Wien) ; 164(6): 1459-1472, 2022 06.
Article in English | MEDLINE | ID: mdl-35043265

ABSTRACT

BACKGROUND: Childhood thalamopeduncular gliomas arise at the interface of the thalamus and cerebral peduncle. The optimal treatment is total resection but not at the cost of neurological function. We present long-term clinical and oncological outcomes of maximal safe resection. METHODS: Retrospective review of prospectively collected data: demography, symptomatology, imaging, extent of resection, surgical complications, histology, functional and oncological outcome. RESULTS: During 16-year period (2005-2020), 21 patients were treated at our institution. These were 13 girls and 8 boys (mean age 7.6 years). Presentation included progressive hemiparesis in 9 patients, raised intracranial pressure in 9 patients and cerebellar symptomatology in 3 patients. The tumour was confined to the thalamus in 6 cases. Extent of resection was judged on postoperative imaging as total (6), near-total (6) and less extensive (9). Surgical complications included progression of baseline neurological status in 6 patients, and 5 of these gradually improved to preoperative status. All tumours were classified as low-grade gliomas. Disease progression was observed in 9 patients (median progression-free survival 7.3 years). At last follow-up (median 6.1 years), all patients were alive, median Lansky score of 90. Seven patients were without evidence of disease, 6 had stable disease, 7 stable following progression and 1 had progressive disease managed expectantly. CONCLUSION: Paediatric patients with low-grade thalamopeduncular gliomas have excellent long-term functional and oncological outcomes when gross total resection is not achievable. Surgery should aim at total resection; however, neurological function should not be endangered due to excellent chance for long-term survival.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/complications , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Child , Female , Glioma/complications , Glioma/diagnostic imaging , Glioma/surgery , Humans , Magnetic Resonance Imaging , Male , Neurosurgical Procedures/methods , Retrospective Studies , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/surgery , Treatment Outcome
5.
Eur J Paediatr Neurol ; 35: 49-55, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34610561

ABSTRACT

OBJECT: Epilepsy surgery is an effective treatment for selected patients with focal intractable epilepsy. Complete removal of the epileptogenic zone significantly increases the chances for postoperative seizure-freedom. In complex surgical candidates, delineation of the epileptogenic zone requires a long-term invasive video/EEG from intracranial electrodes. It is especially challenging to achieve a complete resection in deep brain structures such as opercular-insular cortex. We report a novel approach utilizing intraoperative visual detection of stereotactically implanted depth electrodes to inform and guide the extent of surgical resection. METHODS: We retrospectively reviewed data of pediatric patients operated in Motol Epilepsy Center between October 2010 and June 2020 who underwent resections guided by intraoperative visual detection of depth electrodes following SEEG. The outcome in terms of seizure- and AED-freedom was assessed individually in each patient. RESULTS: Nineteen patients (age at surgery 2.9-18.6 years, median 13 years) were included in the study. The epileptogenic zone involved opercular-insular cortex in eighteen patients. The intraoperative detection of the electrodes was successful in seventeen patients and the surgery was regarded complete in sixteen. Thirteen patients were seizure-free at final follow-up including six drug-free cases. The successful intraoperative detection of the electrodes was associated with favorable outcome in terms of achieving complete resection and seizure-freedom in most cases. On the contrary, the patients in whom the procedure failed had poor postsurgical outcome. CONCLUSION: The reported technique helps to achieve the complete resection in challenging patients with the epileptogenic zone in deep brain structures.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Child , Drug Resistant Epilepsy/surgery , Electrodes, Implanted , Electroencephalography , Epilepsy/surgery , Humans , Insular Cortex , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...