Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 12(9): 211, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35945986

ABSTRACT

Gossypium hirsutum L. represents the best cotton species for fiber production, thus computing the largest cultivated area worldwide. Meloidogyne incognita is a root-knot nematode (RKN) and one of the most important species of Meloidogyne genus, which has a wide host range, including cotton plants. Phytonematode infestations can only be partially controlled by conventional agricultural methods, therefore, more effective strategies to improve cotton resistance to M. incognita disease are highly desirable. The present study employed functional genomics to validate the involvement of two previously identified candidate genes, encoding dirigent protein 4-GhDIR4 and peroxiredoxin-2-GhPRXIIB, in cotton defense against M. incognita. Transgenic A. thaliana plant lines overexpressing GhDIR4 and GhPRXIIB genes were generated and displayed significantly improved resistance against M. incognita infection in terms of female nematode abundance in the roots when compared to wild-type control plants. For our best target-gene GhDIR4, an in-silico functional analysis, including multiple sequence alignment, phylogenetic relationship, and search for specific protein motifs unveiled potential orthologs in other relevant crop plants, including monocots and dicots. Our findings provide valuable information for further understanding the roles of GhDIR and GhPRXIIB genes in cotton defense response against RKN nematode. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03282-4.

2.
J Agric Food Chem ; 69(23): 6379-6395, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34097395

ABSTRACT

The natural increase of the world's population implies boosting agricultural demand. In the current non-optimistic global scenario, where adverse climate changes come associated with substantial population growth, the main challenge in agribusiness is food security. Recently, the CRISPR/Cas system has emerged as a friendly gene editing biotechnological tool, enabling a precise manipulation of genomes and enhancement of desirable traits in several organisms. This review highlights the CRISPR/Cas system as a paramount tool for the improvement of agribusiness products and brings up-to-date findings showing its potential applications in improving agricultural-related traits in major plant crops and farm animals, all representing economic-relevant commodities responsible for feeding the world. Several applied pieces of research have successfully demonstrated the CRISPR/Cas ability in boosting interesting traits in agribusiness products, including animal productivity and welfare, crop yield growth, and seed quality, reflecting positive impacts in both socioeconomics and human health aspects. Hence, the CRISPR/Cas system has revolutionized bioscience and biotechnology, and its concrete application in agribusiness goods is on the horizon.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Animals , CRISPR-Cas Systems , Genome, Plant , Humans , Plants, Genetically Modified/genetics
3.
J Proteomics ; 241: 104223, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33845181

ABSTRACT

A comparative proteomic analysis between two near-isogenic rice lines, displaying a resistant and susceptible phenotype upon infection with Magnaporthe oryzae was performed. We identified and validated factors associated with rice disease susceptibility, representing a flourishing source toward a more resolute rice-blast resistance. Proteome profiles were remarkably different during early infection (12 h post-inoculation), revealing several proteins with increased abundance in the compatible interaction. Potential players of rice susceptibility were selected and gene expression was evaluated by RT-qPCR. Gene Ontology analysis disclosed susceptibility gene-encoded proteins claimed to be involved in fungus sustenance and suppression of plant immunity, such as sucrose synthase 4-like, serpin-ZXA-like, nudix hydrolase15, and DjA2 chaperone protein. Two other candidate genes, picked from a previous transcriptome study, were added into our downstream analysis including pyrabactin resistant-like 5 (OsPYL5), and rice ethylene-responsive factor 104 (OsERF104). Further, we validated their role in susceptibility by Transient-Induced Gene Silencing (TIGS) using short antisense oligodeoxyribonucleotides that resulted in a remarkable reduction of foliar disease symptoms in the compatible interaction. Therefore, we successfully employed shotgun proteomics and antisense-based gene silencing to prospect and functionally validate rice potential susceptibility factors, which could be further explored to build rice-blast resistance. SIGNIFICANCE: R gene-mediated disease resistance is race-specific and often not durable in the field. More recently, advancements in new breeding techniques (NBTs) have made plant disease susceptibility genes (S-genes) a new target to build a broad spectrum and more durable resistance, hence an alternative source to R-genes in breeding programs. We successfully coupled shotgun proteomics and gene silencing tools to prospect and validate new rice-bast susceptibility genes that can be further exploited toward a more resolute blast disease resistance.


Subject(s)
Magnaporthe , Oryza , Ascomycota , Disease Resistance/genetics , Gene Silencing , Magnaporthe/metabolism , Oryza/genetics , Oryza/metabolism , Plant Breeding , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics
4.
Proteomics ; 19(13): e1900082, 2019 07.
Article in English | MEDLINE | ID: mdl-31050381

ABSTRACT

Fully sequenced genomes of Xanthomonas campestris pv. campestris (Xcc) strains are reported. However, intra-pathovar differences are still intriguing and far from clear. In this work, the contrasting virulence between two isolates of Xcc - Xcc51 (more virulent) and XccY21 (less virulent) is evaluated by determining their pan proteome profiles. The bacteria are grown in NYG and XVM1 (optimal for induction of hrp regulon) broths and collected at the max-exponential growth phase. Shotgun proteomics reveals a total of 329 proteins when Xcc isolates are grown in XVM1. A comparison of both profiles reveals 47 proteins with significant abundance fluctuations, out of which, 39 show an increased abundance in Xcc51 and are mainly involved in virulence/adaptation mechanisms, genetic information processing, and membrane receptor/iron transport systems, such as BfeA, BtuB, Cap, Clp, Dcp, FyuA, GroEs, HpaG, Tig, and OmpP6. Several differential proteins are further analyzed by qRT-PCR, which reveals a similar expression pattern to the protein abundance. The data shed light on the complex Xcc pathogenicity mechanisms and point out a set of proteins related to the higher virulence of Xcc51. This information is essential for the development of more efficient strategies aiming at the control of black rot disease.


Subject(s)
Bacterial Proteins/analysis , Proteome/analysis , Virulence Factors/analysis , Xanthomonas campestris/pathogenicity , Bacterial Proteins/genetics , Culture Media/chemistry , Gene Expression Profiling , Gene Expression Regulation, Bacterial/genetics , Proteome/genetics , Virulence/genetics , Virulence Factors/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL