Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731855

ABSTRACT

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Subject(s)
Cricetulus , Disease Models, Animal , Sphingomyelin Phosphodiesterase , TRPM Cation Channels , beta-Cyclodextrins , Animals , Sphingomyelin Phosphodiesterase/metabolism , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Mice , Humans , CHO Cells , beta-Cyclodextrins/pharmacology , HEK293 Cells , Membrane Microdomains/metabolism , Membrane Microdomains/drug effects , Pain/drug therapy , Pain/metabolism , Cholesterol/metabolism , Male , Analgesics/pharmacology , Analgesics/therapeutic use , Pregnenolone/pharmacology , Cell Survival/drug effects
2.
Br J Pharmacol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744683

ABSTRACT

BACKGROUND AND PURPOSE: Pulpitis is associated with tooth hypersensitivity and results in pulpal damage. Thermosensitive transient receptor potential (TRP) ion channels expressed in the dental pulp may be key transducers of inflammation and nociception. We aimed at investigating the expression and role of thermo-TRPs in primary human dental pulp cells (hDPCs) in normal and inflammatory conditions. EXPERIMENTAL APPROACH: Inflammatory conditions were induced in hDPC cultures by applying polyinosinic:polycytidylic acid (poly(I:C)). Gene expression and pro-inflammatory cytokine release were measured by RT-qPCR and ELISA. Functions of TRPA1 channels were investigated by monitoring changes in intracellular Ca2+ concentration. Mitochondrial superoxide production was measured using a fluorescent substrate. Cellular viability was assessed by measuring the activity of mitochondrial dehydrogenases and cytoplasmic esterases. TRPA1 activity was modified by agonists, antagonists, and gene silencing. KEY RESULTS: Transcripts of TRPV1, TRPV2, TRPV4, TRPC5, and TRPA1 were highly expressed in control hDPCs, whereas TRPV3, TRPM2, and TRPM3 expressions were much lower, and TRPM8 was not detected. Poly(I:C) markedly up-regulated TRPA1 but not other thermo-TRPs. TRPA1 agonist-induced Ca2+ signals were highly potentiated in inflammatory conditions. Poly(I:C)-treated cells displayed increased Ca2+ responses to H2O2, which was abolished by TRPA1 antagonists. Inflammatory conditions induced oxidative stress, stimulated mitochondrial superoxide production, resulted in mitochondrial damage, and decreased cellular viability of hDPCs. This inflammatory cellular damage was partly prevented by the co-application of TRPA1 antagonist or TRPA1 silencing. CONCLUSION AND IMPLICATIONS: Pharmacological blockade of TRPA1 channels may be a promising therapeutic approach to alleviate pulpitis and inflammation-associated pulpal damage.

3.
Front Immunol ; 14: 1240800, 2023.
Article in English | MEDLINE | ID: mdl-37680639

ABSTRACT

Introduction: Extracts and compounds isolated from hemp (Cannabis sativa) are increasingly gaining popularity in the treatment of a number of diseases, with topical formulations for dermatological conditions leading the way. Phytocannabinoids such as ( )-cannabidiol, ( )-cannabinol and ( )-Δ9-tetrahydrocannabivarin (CBD, CBN, and THCV, respectively), are present in variable amounts in the plant, and have been shown to have mostly anti-inflammatory effects both in vitro and in vivo, albeit dominantly in murine models. The role of phytocannabinoids in regulating responses of dendritic cells (DCs) remains unclear. Methods: Our research aimed to investigate the effects of CBD, CBN, and THCV on human DCs differentiated from monocytes (moDCs). moDCs were treated with up to 10 µM of each phytocannabinoid, and their effects on viability, differentiation, and maturation were assessed both alone, and in conjunction with TLR agonists. The effects of CBD on cytokine production, T cell activation and polarization as well as the transcriptome of moDCs was also determined. Results: Phytocannabinoids did not influence the viability of moDCs up to 10 µM, and only CBD had effects on maturational markers of moDCs, and neither compound influenced LPS-induced activation at 10 µM. Since only CBD had measurable effects on moDCs, in our subsequent experiments we tested the effect only of that pCB. On moDCs differentiated in the presence of CBD subsequent activation by LPS induced a markedly different, much more tolerogenic response. CBD-treated moDCs also produced significantly more interleukin (IL)-6, TNFα and, importantly, IL-10 in response to LPS, which shows a shift toward anti-inflammatory signaling, as well as a more robust secretory response in general. To rule out the possibility that these effects of CBD are specific to TLR4 signaling, we determined the effect of CBD on TLR7/8-induced maturation as well, and saw similar, although less marked responses. CBD-treated moDCs were also less efficient at activating naïve T cells after LPS stimulation, further supporting the tolerogenic effect of this phytocannabinoid on moDCs. Reactome pathway analysis showed an inflammatory response to LPS in moDCs, and to a lesser extent to CBD as well. In contrast CBD-treated moDCs responded to LPS with a shift towards a more tolerogenic phenotype, as IL-10 signaling was the most prominently induced pathway in this group. Discussion: Our results show that CBD achieves an anti-inflammatory effect on adaptive immune responses only in the presence of an activating stimuli on moDCs by reprogramming cells during long-term treatment, and not through acute, short-term effects.


Subject(s)
Cannabidiol , Humans , Animals , Mice , Cannabidiol/pharmacology , Interleukin-10 , Lipopolysaccharides/pharmacology , Monocytes , Cell Differentiation , Cannabinol , Interleukin-6
4.
Front Med (Lausanne) ; 10: 1168359, 2023.
Article in English | MEDLINE | ID: mdl-37250649

ABSTRACT

Introduction: Pruritus is a common excruciating symptom in systemic autoimmune diseases such as dermatomyositis (DM) but the pathogenesis is not fully understood. We intended to investigate the targeted expression analysis of candidate molecules involved in the development of pruritus in lesional vs. non-lesional skin samples of patients affected with active DM. We looked for correlations between the investigated pruriceptive signaling molecules, disease activity, and itching sensation of DM patients. Methods: Interleukins (IL-33 and IL-6), tumor necrosis factor α (TNF-α), peroxisome proliferator-activated receptor γ (PPAR-γ), and ion channels belonging to the transient receptor potential (TRP) family were analyzed. The expression of TNF-α, PPAR-γ, IL-33, IL-6, and TRP channels in lesional DM skin was evaluated by RT-qPCR and immunohistochemistry and was compared with non-lesional DM skin samples. Pruritus, disease activity, and damage of DM were evaluated by the 5-D itch scale and Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), respectively. Statistical analysis was performed with IBM SPSS 28 software. Results: A total of 17 active DM patients participated in the study. We could show that the itching score was positively correlated with the CDASI activity score (Kendall's tau-b = 0.571; p = 0.003). TNF-α gene expression was significantly higher in lesional DM skin than in non-lesional DM skin (p = 0.009) and differed in the subgroups of patients with different itch intensities (p = 0.038). The mRNA expression of lesional IL-6 correlated positively with 5-D itch and CDASI activity score (Kendall's tau-b = 0.585; p = 0.008 and 0.45; p = 0.013, respectively). TRPV4 expressions were positively correlated with CDASI damage score (Kendall's tau-b = 0.626; p < 0.001), but the mRNA expressions of the TRP family, PPAR-γ, IL-6, and IL-33 were not different in lesional and non-lesional samples. Immunohistochemistry analysis did not find significant alterations in the expressions of TNF-α, PPAR-γ, IL-6, and IL-33 in lesional and non-lesional regions. Discussion: Our results argue that cutaneous disease activity, TNF-α, and IL-6 might play a central role in DM-associated itch, while TRPV4 plays a central role in tissue regeneration.

5.
J Invest Dermatol ; 143(5): 801-811.e10, 2023 05.
Article in English | MEDLINE | ID: mdl-36502939

ABSTRACT

Langerhans cells (LCs) are the sole professional antigen-presenting cell normally found in the human epidermal compartment. Research into their physiological role is hindered by the fact that they are invariably activated during isolation from the skin. To overcome this challenge, we turned to a monocyte-derived LC (moLC) model, which we characterized with RNA sequencing, and compared the transcriptome of moLCs with that of donor-matched immature dendritic cells. We found that moLCs express markers characteristic of LC2 cells as well as TRPV4. TRPV4 is especially important in the skin because it has been linked to the conservation of the skin barrier, immunological responses, as well as acute and chronic itch, but we know little about its function on LCs. Our results show that TRPV4 activation increased the expression of Langerin and led to increased intracellular calcium concentration in moLCs. Regarding the functionality of moLCs, we found that TRPV4 agonism had a mitigating effect on their inflammatory responses because it decreased their cytokine production and T-cell activating capability. Because TRPV4 has emerged as a potential therapeutic target in dermatological conditions, it is important to highlight LCs as, to our knowledge, a previously unreported target of these therapies.


Subject(s)
Langerhans Cells , Monocytes , Humans , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Skin/metabolism , Epidermis/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism
6.
J Org Chem ; 87(23): 15830-15836, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36411253

ABSTRACT

l-Iduronic acid is a key constituent of heparin and heparan sulfate polysaccharides due to its unique conformational plasticity, which facilitates the binding of polysaccharides to proteins. At the same time, this is the synthetically most challenging unit of heparinoid oligosaccharides; therefore, there is a high demand for its replacement with a more easily accessible sugar unit. In the case of idraparinux, an excellent anticoagulant heparinoid pentasaccharide, we demonstrated that l-iduronic acid can be replaced by an easier-to-produce l-sugar while maintaining its essential biological activity. From the inexpensive d-mannose, through a highly functionalized phenylthio mannoside, the l-gulose donor was prepared by C-5 epimerization in 10 steps with excellent yield. This unit was incorporated into the pentasaccharide by α-selective glycosylation and oxidized to l-guluronic acid. The complete synthesis required only 36 steps, with 21 steps for the longest linear route. The guluronate containing pentasaccharide inhibited coagulation factor Xa by 50% relative to the parent compound, representing an excellent anticoagulant activity. To the best of our knowledge, this is the first biologically active heparinoid anticoagulant which contains a different sugar unit instead of l-iduronic acid.


Subject(s)
Heparinoids , Iduronic Acid , Oligosaccharides/pharmacology , Anticoagulants/pharmacology , Mannose
7.
Int J Mol Sci ; 23(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35456955

ABSTRACT

Atopic dermatitis (AD) is one of the most common skin diseases, the prevalence of which is especially high among children. Although our understanding about its pathogenesis has substantially grown in recent years, and hence, several novel therapeutic targets have been successfully exploited in the management of the disease, we still lack curative treatments for it. Thus, there is an unmet societal demand to identify further details of its pathogenesis to thereby pave the way for novel therapeutic approaches with favorable side effect profiles. It is commonly accepted that dysfunction of the complex cutaneous barrier plays a central role in the development of AD; therefore, the signaling pathways involved in the regulation of this quite complex process are likely to be involved in the pathogenesis of the disease and can provide novel, promising, yet unexplored therapeutic targets. Thus, in the current review, we aim to summarize the available potentially AD-relevant data regarding one such signaling pathway, namely cutaneous opioidergic signaling.


Subject(s)
Dermatitis, Atopic , Receptors, Opioid , Administration, Cutaneous , Child , Humans , Receptors, Opioid/metabolism , Signal Transduction , Skin/metabolism
8.
Front Pharmacol ; 13: 745658, 2022.
Article in English | MEDLINE | ID: mdl-35321329

ABSTRACT

Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.

9.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34360541

ABSTRACT

Photodamage-induced and viral keratitis could benefit from treatment with novel nonsteroid anti-inflammatory agents. Therefore, we determined whether human corneal epithelial cells (HCECs) express members of the endocannabinoid system (ECS), and examined how the endocannabinoid anandamide (AEA, N-arachidonoyl ethanolamine) influences the Toll-like receptor 3 (TLR3) agonism- or UVB irradiation-induced inflammatory response of these cells. Other than confirming the presence of cannabinoid receptors, we show that endocannabinoid synthesizing and catabolizing enzymes are also expressed in HCECs in vitro, as well as in the epithelial layer of the human cornea in situ, proving that they are one possible source of endocannabinoids. p(I:C) and UVB irradiation was effective in promoting the transcription and secretion of inflammatory cytokines. Surprisingly, when applied alone in 100 nM and 10 µM, AEA also resulted in increased pro-inflammatory cytokine production. Importantly, AEA further increased levels of these cytokines in the UVB model, whereas its lower concentration partially prevented the transcriptional effect of p(I:C), while not decreasing the p(I:C)-induced cytokine release. HCECs express the enzymatic machinery required to produce endocannabinoids both in vitro and in situ. Moreover, our data show that, despite earlier reports about the anti-inflammatory potential of AEA in murine cornea, its effects on the immune phenotype of human corneal epithelium may be more complex and context dependent.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arachidonic Acids/pharmacology , Endocannabinoids/pharmacology , Epithelium, Corneal/immunology , Inflammation/immunology , Polyunsaturated Alkamides/pharmacology , Toll-Like Receptor 3/agonists , Ultraviolet Rays , Calcium Channel Blockers/pharmacology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/radiation effects , Gene Expression Regulation , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/radiotherapy
10.
Front Cell Dev Biol ; 9: 635659, 2021.
Article in English | MEDLINE | ID: mdl-33732703

ABSTRACT

Already for centuries, humankind is driven to understand the physiological and pathological mechanisms that occur in our brains. Today, we know that ion channels play an essential role in the regulation of neural processes and control many functions of the central nervous system. Ion channels present a diverse group of membrane-spanning proteins that allow ions to penetrate the insulating cell membrane upon opening of their channel pores. This regulated ion permeation results in different electrical and chemical signals that are necessary to maintain physiological excitatory and inhibitory processes in the brain. Therefore, it is no surprise that disturbances in the functions of cerebral ion channels can result in a plethora of neurological disorders, which present a tremendous health care burden for our current society. The identification of ion channel-related brain disorders also fuel the research into the roles of ion channel proteins in various brain states. In the last decade, mounting evidence has been collected that indicates a pivotal role for transient receptor potential (TRP) ion channels in the development and various physiological functions of the central nervous system. For instance, TRP channels modulate neurite growth, synaptic plasticity and integration, and are required for neuronal survival. Moreover, TRP channels are involved in numerous neurological disorders. TRPM3 belongs to the melastatin subfamily of TRP channels and represents a non-selective cation channel that can be activated by several different stimuli, including the neurosteroid pregnenolone sulfate, osmotic pressures and heat. The channel is best known as a peripheral nociceptive ion channel that participates in heat sensation. However, recent research identifies TRPM3 as an emerging new player in the brain. In this review, we summarize the available data regarding the roles of TRPM3 in the brain, and correlate these data with the neuropathological processes in which this ion channel may be involved.

11.
Biochem Pharmacol ; 183: 114310, 2021 01.
Article in English | MEDLINE | ID: mdl-33130130

ABSTRACT

During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch. The thermosensitive TRPM3 plays an indispensable role in heat nociception together with TRPV1 and TRPA1. However, the role of TRPM3 in the development of pruritus has not been studied yet. Therefore, in this study we aimed at investigating the potential role of TRPM3 in the transduction of pruritus and pain by investigating itch- and nociception-related behavior of Trpm3+/+ and Trpm3-/- mice, and by studying the activation of somatosensory neurons isolated from trigeminal ganglia upon application of algogenic and pruritogenic substances. Activators of TRPM3 evoked only nocifensive responses, but not itch in Trpm3+/+ animals, and these nocifensive responses were abolished in the Trpm3-/- strain. Histamine and endogenous non-histaminergic pruritogens induced itch in both Trpm3+/+ and Trpm3-/- mice to a similar extent. Genetic deletion or pharmacological blockade diminished TRPM3 mediated Ca2+ responses of sensory neurons, but did not affect responses evoked by pruritogenic substances. Our results demonstrate that, in contrast to other thermosensitive TRP channels, TRPM3 selectively mediates nociception, but not itch sensation, and suggest that TRPM3 is a promising candidate to selectively target pain sensation.


Subject(s)
Nociception/physiology , Pruritus/chemically induced , Pruritus/metabolism , TRPM Cation Channels/deficiency , Animals , Capsaicin/toxicity , Endothelin-1/toxicity , Histamine/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , TRPM Cation Channels/antagonists & inhibitors
12.
Biomolecules ; 10(10)2020 10 20.
Article in English | MEDLINE | ID: mdl-33092128

ABSTRACT

Racemic chiral O,N-heterocycles containing 2-arylchroman or 2-aryl-2H-chromene subunit condensed with morpholine, thiazole, or pyrrole moieties at the C-3-C-4 bond were synthesized with various substitution patterns of the aryl group by the cyclization of cis- or trans-3-aminoflavanone analogues. The 3-aminoflavanone precursors were obtained in a Neber rearrangement of oxime tosylates of flavanones, which provided the trans diastereomer as the major product and enabled the isolation of both the cis- and trans-diastereomers. The cis- and trans-aminoflavanones were utilized to prepare three diastereomers of 5-aryl-chromeno[4,3-b][1,4]oxazines. Antiproliferative activity of the condensed heterocycles and precursors was evaluated against A2780 and WM35 cancer cell lines. For a 3-(N-chloroacetylamino)-flavan-4-ol derivative, showing structural analogy with acyclic acid ceramidase inhibitors, 0.15 µM, 3.50 µM, and 6.06 µM IC50 values were measured against A2780, WM35, and HaCat cell lines, and apoptotic mechanism was confirmed. Low micromolar IC50 values down to 2.14 µM were identified for the thiazole- and pyrrole-condensed 2H-chromene derivatives. Enantiomers of the condensed heterocycles were separated by HPLC using chiral stationary phase, HPLC-ECD spectra were recorded and TDDFT-ECD calculations were performed to determine the absolute configuration and solution conformation. Characteristic ECD transitions of the separated enantiomers were correlated with the absolute configuration and effect of substitution pattern on the HPLC elution order was determined.


Subject(s)
Ovarian Neoplasms/drug therapy , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Benzopyrans/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Cytostatic Agents/chemistry , Female , Flavonoids/chemistry , Flavonoids/pharmacology , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Molecular Conformation/drug effects , Molecular Structure , Morpholines/chemistry , Morpholines/pharmacology , Ovarian Neoplasms/pathology , Stereoisomerism
13.
Org Biomol Chem ; 18(11): 2148-2162, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32134098

ABSTRACT

The Heck-oxyarylation of racemic 2-(1-naphthyl)- and 2-(2-naphthyl)-2H-chromene derivatives were carried out resulting diastereoselectively in (6S*,6aR*,11aR*)-6-(1-naphthyl)- and 6-(2-naphthyl)-pterocarpans as major products and bridged (6R*,12R*)-6,12-methanodibenzo[d,g][1,3]dioxocine derivatives as minor products. Antiproliferative activity of two 6-naphthylpterocarpans was identified by MTT assay against A2780 and WM35 human cancer cell lines with low micromolar IC50 values. The measured 0.80 and 3.51 µM IC50 values of the (6S*,6aR*,11aR*)-6-(1-naphthyl)pterocarpan derivative with 8,9-methylenedioxy substitution represent the best activities in the pterocarpan family. Enantiomers of the pterocarpan and dioxocine derivatives and their chiral 2-naphthylchroman-4-one and 2-naphthyl-2H-chromene precursors were separated by HPLC using chiral stationary phase. HPLC-ECD spectra were recorded and absolute configuration and low-energy solution conformations were determined by TDDFT-ECD calculations. Characteristic ECD transitions of the separated enantiomers were correlated with their absolute configuration.

14.
Biochem Pharmacol ; 174: 113826, 2020 04.
Article in English | MEDLINE | ID: mdl-31987857

ABSTRACT

BACKGROUND: Volatile anaesthetics (VAs) are the most widely used compounds to induce reversible loss of consciousness and maintain general anaesthesia during surgical interventions. Although the mechanism of their action is not yet fully understood, it is generally believed, that VAs depress central nervous system functions mainly through modulation of ion channels in the neuronal membrane, including 2-pore-domain K+ channels, GABA and NMDA receptors. Recent research also reported their action on nociceptive and thermosensitive TRP channels expressed in the peripheral nervous system, including TRPV1, TRPA1, and TRPM8. Here, we investigated the effect of VAs on TRPM3, a less characterized member of the thermosensitive TRP channels playing a central role in noxious heat sensation. METHODS: We investigated the effect of VAs on the activity of recombinant and native TRPM3, by monitoring changes in the intracellular Ca2+ concentration and measuring TRPM3-mediated transmembrane currents. RESULTS: All the investigated VAs (chloroform, halothane, isoflurane, sevoflurane) inhibited both the agonist-induced (pregnenolone sulfate, CIM0216) and heat-activated Ca2+ signals and transmembrane currents in a concentration dependent way in HEK293T cells overexpressing recombinant TRPM3. Among the tested VAs, halothane was the most potent blocker (IC50 = 0.52 ± 0.05 mM). We also investigated the effect of VAs on native TRPM3 channels expressed in sensory neurons of the dorsal root ganglia. While VAs activated certain sensory neurons independently of TRPM3, they strongly and reversibly inhibited the agonist-induced TRPM3 activity. CONCLUSIONS: These data provide a better insight into the molecular mechanism beyond the analgesic effect of VAs and propose novel strategies to attenuate TRPM3 dependent nociception.


Subject(s)
Anesthetics, Inhalation/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/metabolism , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL
17.
Curr Probl Dermatol ; 54: 54-63, 2018.
Article in English | MEDLINE | ID: mdl-30130771

ABSTRACT

Regulation of pH is one of the most complex mechanisms in human physiology. Indeed, the H+ ion concentration not only contributes to the establishment and maintenance of the body's homeostasis (by defining isohydria) but it also acts as an ionic, electric or osmotic driving force; provides optimum conditions for the proper functions of a plethora of molecules; behaves as an extra- and intracellular signaling system; exerts protective functions, and so on. The versatile role of pH requires delicate, well-orchestrated regulatory machineries that are controlled by a multitude of endogenous mechanisms - this is especially true for the skin whose pH is quite unique within the body. In this chapter, we summarize key endogenous factors and mechanisms that can influence the pH of the skin. Moreover, we highlight the significance of certain molecular systems (i.e., pH-sensing ionotropic and metabotropic receptors) that have recently emerged as potential "pH-regulated sensors and transducers," which are suggested to mediate the cellular effects of pH in various skin compartments and cells.


Subject(s)
Ion Channels/metabolism , Skin/metabolism , Acid Sensing Ion Channels/metabolism , Animals , Homeostasis , Humans , Hydrogen-Ion Concentration , Mice , Receptors, Metabotropic Glutamate/metabolism , Receptors, Purinergic/metabolism , Signal Transduction , Skin/chemistry , Transient Receptor Potential Channels/metabolism
18.
J Invest Dermatol ; 138(8): 1774-1784, 2018 08.
Article in English | MEDLINE | ID: mdl-29550417

ABSTRACT

This study revealed the modulatory role of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) cation channels in the Aldara-induced (5% imiquimod) murine psoriasis model using selective antagonists and genetically altered animals. We have also developed a refined localized model to enable internal controls and reduce systemic effects. Skin pathology was quantified by measuring skin thickness, scaling, blood flow, and analyzing dermal cellular infiltrate, whereas nocifensive behaviors were also observed. Cytokine gene expression profiles were measured ex vivo. Psoriasiform dermatitis was significantly enhanced in TRPA1 knockout mice and with TRPA1 antagonist (A967079) treatment. By comparison, symptoms were decreased when TRPV1 function was inhibited. Imiquimod induced Ca2+ influx in TRPA1-, but not in TRPV1-expressing cell lines. Immunohistochemical studies revealed that CD4+ T helper cells express TRPA1 but not TRPV1 ion channels in mice skin. Compared with the TRPV1 knockout animals, additional elimination of the TRPA1 channels in the TRPV1/TRPA1 double knockout mice did not modify the outcome of the imiquimod-induced reaction, further supporting the dominant role of TRPV1 in the process. Our results suggest that the protective effects in psoriasiform dermatitis can be mediated by the activation of neuronal and nonneuronal TRPA1 receptors.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Psoriasis/immunology , TRPA1 Cation Channel/immunology , TRPV Cation Channels/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Disease Models, Animal , Female , Humans , Imiquimod/toxicity , Male , Mice , Mice, Knockout , Neurons/metabolism , Oximes/pharmacology , Psoriasis/chemically induced , Psoriasis/pathology , Skin/drug effects , Skin/immunology , Skin/innervation , Skin/pathology , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/genetics , TRPV Cation Channels/metabolism
19.
Br J Pharmacol ; 174(23): 4493-4507, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28945920

ABSTRACT

BACKGROUND AND PURPOSE: Heat-sensitive transient receptor potential vanilloid (TRPV) channels are expressed in various epithelial tissues regulating, among else, barrier functions. Their expression is well established in the distal nephron; however, we have no data about their presence in podocytes. As podocytes are indispensable in the formation of the glomerular filtration barrier, we investigated the presence and function of Ca2+ -permeable TRPV1-4 channels in human podocyte cultures. EXPERIMENTAL APPROACH: Expression of TRPV1-4 channels was investigated at protein (immunocytochemistry, Western blot) and mRNA (Q-PCR) level in a conditionally immortalized human podocyte cell line. Channel function was assessed by measuring intracellular Ca2+ concentration using Flou-4 Ca2+ -indicator dye and patch clamp electrophysiology upon applying various activators and inhibitors. KEY RESULTS: Thermosensitive TRP channels were expressed in podocytes. The TRPV1-specific agonists capsaicin and resiniferatoxin did not affect the intracellular Ca2+ concentration. Cannabidiol, an activator of TRPV2 and TRPV4 channels, induced moderate Ca2+ -influxes, inhibited by both tranilast and HC067047, blockers of TRPV2 and TRPV4 channels respectively. The TRPV4-specific agonists GSK1016790A and 4α-phorbol 12,13-didecanoate induced robust Ca2+ -signals which were abolished by HC067047. Non-specific agonists of TRPV3 channels induced marked Ca2+ transients. However, TRPV3 channel blockers, ruthenium red and isopentenyl diphosphate only partly inhibited the responses and TRPV3 silencing was ineffective suggesting remarkable off-target effects of the compounds. CONCLUSION AND IMPLICATIONS: Our results indicate the functional presence of TRPV4 and other thermosensitive TRPV channels in human podocytes and raise the possibility of their involvement in the regulation of glomerular filtration barrier.


Subject(s)
Calcium/metabolism , Glomerular Filtration Barrier/metabolism , Podocytes/metabolism , TRPV Cation Channels/metabolism , Calcium Signaling/drug effects , Cannabidiol/pharmacology , Capsaicin/pharmacology , Cell Line , Diterpenes/pharmacology , Humans , Patch-Clamp Techniques , Podocytes/drug effects , RNA, Messenger/metabolism , TRPV Cation Channels/drug effects
20.
Dermatoendocrinol ; 9(1): e1361576, 2017.
Article in English | MEDLINE | ID: mdl-29484098

ABSTRACT

The sebaceous gland, long considered an evolutionary relic with little-to-no physiological relevance in humans, has emerged in recent decades as a key orchestrator and contributor to many cutaneous functions. In addition to the classical physico-chemical barrier function of the skin against constant environmental challenges, a more novel, neuro-immune modulatory role has also emerged. As part of the complex intercellular communication network of the integumentary system, the sebaceous gland acts as a "relay station" in the skin for many endocrine factors. This review aims to offer a comprehensive overview of endocrine effects and subsequent interactions on this much maligned mini-organ.

SELECTION OF CITATIONS
SEARCH DETAIL
...