Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 68(20): 2456-2466, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37620230

ABSTRACT

Chinese cities are core in the national carbon mitigation and largely affect global decarbonisation initiatives, yet disparities between cities challenge country-wide progress. Low-carbon transition should preferably lead to a convergence of both equity and mitigation targets among cities. Inter-city supply chains that link the production and consumption of cities are a factor in shaping inequality and mitigation but less considered aggregately. Here, we modelled supply chains of 309 Chinese cities for 2012 to quantify carbon footprint inequality, as well as explored a leverage opportunity to achieve an inclusive low-carbon transition. We revealed significant carbon inequalities: the 10 richest cities in China have per capita carbon footprints comparable to the US level, while half of the Chinese cities sit below the global average. Inter-city supply chains in China, which are associated with 80% of carbon emissions, imply substantial carbon leakage risks and also contribute to socioeconomic disparities. However, the significant carbon inequality implies a leveraging opportunity that substantial mitigation can be achieved by 32 super-emitting cities. If the super-emitting cities adopt their differentiated mitigation pathway based on affluence, industrial structure, and role of supply chains, up to 1.4 Gt carbon quota can be created, raising 30% of the projected carbon quota to carbon peak. The additional carbon quota allows the average living standard of the other 60% of Chinese people to reach an upper-middle-income level, highlighting collaborative mechanism at the city level has a great potential to lead to a convergence of both equity and mitigation targets.

2.
Curr Biol ; 33(5): 990-997.e4, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36787746

ABSTRACT

Food production, particularly of fed animals, is a leading cause of environmental degradation globally.1,2 Understanding where and how much environmental pressure different fed animal products exert is critical to designing effective food policies that promote sustainability.3 Here, we assess and compare the environmental footprint of farming industrial broiler chickens and farmed salmonids (salmon, marine trout, and Arctic char) to identify opportunities to reduce environmental pressures. We map cumulative environmental pressures (greenhouse gas emissions, nutrient pollution, freshwater use, and spatial disturbance), with particular focus on dynamics across the land and sea. We found that farming broiler chickens disturbs 9 times more area than farming salmon (∼924,000 vs. ∼103,500 km2) but yields 55 times greater production. The footprints of both sectors are extensive, but 95% of cumulative pressures are concentrated into <5% of total area. Surprisingly, the location of these pressures is similar (85.5% spatial overlap between chicken and salmon pressures), primarily due to shared feed ingredients. Environmental pressures from feed ingredients account for >78% and >69% of cumulative pressures of broiler chicken and farmed salmon production, respectively, and could represent a key leverage point to reduce environmental footprints. The environmental efficiency (cumulative pressures per tonne of production) also differs geographically, with areas of high efficiency revealing further potential to promote sustainability. The propagation of environmental pressures across the land and sea underscores the importance of integrating food policies across realms and sectors to advance food system sustainability.


Subject(s)
Chickens , Salmon , Animals , Seafood , Agriculture , Farms , Aquaculture
3.
J Econ Struct ; 9(1): 14, 2020.
Article in English | MEDLINE | ID: mdl-32117682

ABSTRACT

Multiregional input-output (MRIO) databases are used to analyze the impact of resource use and environmental impacts along global supply chains. To accurately account for pressures and impacts that are highly concentrated in specific sectors or regions of the world, such as agricultural and land-use-related impacts, MRIO databases are being fueled by increasingly more detailed data. To date no MRIO database exists which couples a high level of harmonized sector detail with high country resolution. Currently available databases either aggregate minor countries into rest-of-the-world (WIOD and EXIOBASE 3), or the high country resolution is achieved at the cost of non-harmonized or lower sectoral detail (Eora, OECD-ICIO or the GTAP-MRIO). This aggregation can cause potentially significant differences in environmental and socioeconomic impact calculations. In this paper, we describe the development of an EXIOBASE 3 variant that expands regional coverage from 49 regions to 214 countries, while keeping the high and harmonized sectoral detail. We show the relevance of disaggregation for land-use accounting. Previous rest-of-the-world regions supply one-third of global land, which is used to produce a large range of different products under very different levels of productivity. We find that the aggregation of regions leads to a difference in the balance of land embodied in trade of up to 6% and a difference of land embodied in imports of up to 68% for individual countries and up to 600% for land-use-relevant sectors. Whilst the database can still be considered experimental, it is expected to increase the accuracy of estimates for environmental footprint studies of the original EXIOBASE countries, and provides the first estimates for the countries in the previous rest-of-the world.

SELECTION OF CITATIONS
SEARCH DETAIL
...