Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 60(24): 13294-13301, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33749121

ABSTRACT

The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein-catalyzed formation of antivirals by the 3C-protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non-protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio-actives through protein-catalyzed, non-enzymatic C-C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.


Subject(s)
3C Viral Proteases/antagonists & inhibitors , Antiviral Agents/chemistry , Enterovirus D, Human/enzymology , Evolution, Chemical , 3C Viral Proteases/metabolism , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Biocatalysis , Carbon/chemistry , Enterovirus D, Human/drug effects , Humans , Kinetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...