Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1362695, 2024.
Article in English | MEDLINE | ID: mdl-38444829

ABSTRACT

Gastrulation in zebrafish embryos commences with the morphogenetic rearrangement of blastodermal cells, which undergo a coordinated spreading from the animal pole to wrap around the egg at the vegetal pole. This rearrangement, known as epiboly, relies on the orchestrated activity of maternal transcripts present in the egg, compensating for the gradual activation of the zygotic genome. Epiboly involves the mechano-transducer activity of yap1 but what are the regulators of yap1 activity and whether these are maternally or zygotically derived remain elusive. Our study reveals the crucial role of maternal vgll4a, a proposed Yap1 competitor, during zebrafish epiboly. In embryos lacking maternal/zygotic vgll4a (MZvgll4a), the progression of epiboly and blastopore closure is delayed. This delay is associated with the ruffled appearance of the sliding epithelial cells, decreased expression of yap1-downstream targets and transient impairment of the actomyosin ring at the syncytial layer. Our study also shows that, rather than competing with yap1, vgll4a modulates the levels of the E-cadherin/ß-catenin adhesion complex at the blastomeres' plasma membrane and hence their actin cortex distribution. Taking these results together, we propose that maternal vgll4a acts at epiboly initiation upstream of yap1 and the E-cadherin/ß-catenin adhesion complex, contributing to a proper balance between tissue tension/cohesion and contractility, thereby promoting a timely epiboly progression.

2.
Front Cell Dev Biol ; 9: 767048, 2021.
Article in English | MEDLINE | ID: mdl-34746155

ABSTRACT

Hedgehog (Hh) signaling is a highly regulated molecular pathway implicated in many developmental and homeostatic events. Mutations in genes encoding primary components or regulators of the pathway cause an array of congenital malformations or postnatal pathologies, the extent of which is not yet fully defined. Mosmo (Modulator of Smoothened) is a modulator of the Hh pathway, which encodes a membrane tetraspan protein. Studies in cell lines have shown that Mosmo promotes the internalization and degradation of the Hh signaling transducer Smoothened (Smo), thereby down-modulating pathway activation. Whether this modulation is essential for vertebrate embryonic development remains poorly explored. Here, we have addressed this question and show that in zebrafish embryos, the two mosmo paralogs, mosmoa and mosmob, are expressed in the head mesenchyme and along the entire ventral neural tube. At the cellular level, Mosmoa localizes at the plasma membrane, cytoplasmic vesicles and primary cilium in both zebrafish and chick embryos. CRISPR/Cas9 mediated inactivation of both mosmoa and mosmob in zebrafish causes frontonasal hypoplasia and craniofacial skeleton defects, which become evident in the adult fish. We thus suggest that MOSMO is a candidate to explain uncharacterized forms of human congenital craniofacial malformations, such as those present in the 16p12.1 chromosomal deletion syndrome encompassing the MOSMO locus.

3.
Elife ; 102021 09 21.
Article in English | MEDLINE | ID: mdl-34545806

ABSTRACT

The vertebrate eye primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening.


Rounded eyeballs help to optimize vision ­ but how do they acquire their distinctive shape? In animals with backbones, including humans, the eye begins to form early in development. A single layer of embryonic tissue called the optic vesicle reorganizes itself into a two-layered structure: a thin outer layer of cells, known as the retinal pigmented epithelium (RPE for short), and a thicker inner layer called the neural retina. If this process fails, the animal may be born blind or visually impaired. How this flat two-layered structure becomes round is still being investigated. In fish, studies have shown that the inner cell layer ­ the neural retina ­ generates mechanical forces that cause the developing tissue to curve inwards to form a cup-like shape. But it was unclear whether the outer layer of cells (the RPE) also contributed to this process. Moreno-Marmol et al. were able to investigate this question by genetically modifying zebrafish to make all new RPE cells fluoresce. Following the early development of the zebrafish eye under a microscope revealed that RPE cells flattened themselves into long thin structures that stretched to cover the entire neural retina. This change was made possible by the cell's internal skeleton reorganizing. In fact, preventing this reorganization stopped the RPE cells from flattening, and precluded the optic cup from acquiring its curved shape. The results thus confirmed a direct role for the RPE in generating curvature. The entire process did not require the RPE to produce new cells, allowing the curved shape to emerge in just a few hours. This is a major advantage for fast-developing species such as zebrafish. In species whose embryos develop more slowly, such as mice and humans, the RPE instead grows by producing additional cells ­ a process that takes many days. The development of the eye thus shows how various species use different evolutionary approaches to achieve a common goal.


Subject(s)
Morphogenesis , Retinal Pigment Epithelium/cytology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Biomechanical Phenomena , Embryo, Nonmammalian , Embryonic Development , Retina , Zebrafish/genetics
4.
Cell Stem Cell ; 24(3): 462-476.e6, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849367

ABSTRACT

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.


Subject(s)
Chromatin/metabolism , Neural Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cells, Cultured , Gene Regulatory Networks/genetics , Mice , Mice, Knockout , Mice, Transgenic , Mutation , SOXB1 Transcription Factors/deficiency , SOXB1 Transcription Factors/genetics , Zebrafish
5.
Mol Genet Genomic Med ; 5(4): 323-335, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28717659

ABSTRACT

BACKGROUND: Primary open-angle glaucoma (POAG) is a complex disease of multigenic inheritance and the most common subtype of glaucoma. SIX6 encodes a transcription factor involved in retina, optic nerve, and pituitary development. Previous studies showed a genetic association between the SIX6 locus and POAG, identifying risk alleles. Whether these alleles are present also in the south Indian population is unclear. METHODS: To address this question, the SIX6 gene and an already characterized and highly conserved SIX6 enhancer (Ch14:60974427-60974430) were sequenced in two south Indian cohorts, respectively, composed of 65/65 and 200/200 POAG cases/age-matched controls. We next used Taqman-based allelic discrimination assay to genotype a common variant (rs33912345: c.421A>C) and the rs1048372 SNP in two cohorts, respectively, composed of 557/387 and 590/448 POAG cases/age-matched controls. An additional cohort of 153 POAG cases was subsequently recruited to assess the association of the rs33912345:c.421A>C and rs10483727 variants with more prominent changes in two POAG diagnostic parameters: retinal nerve fiber layer thickness and vertical cup/disc ratio, using spectral domain optical coherence tomography. The activity of the newly identified enhancer variants was assessed by transgenesis in zebrafish and luciferase assays. RESULTS: We identified two known rare and two common variants in the SIX6 locus and a novel 4 bp deletion in the analyzed enhancer. Contrary to previous studies, we could not establish a significant association between the rs10483727 and rs33912345:c.421A>C variants and PAOG in the south Indian ethnicity but patients carrying the corresponding C or T risk alleles exhibited a dose-dependent reduction of the thickness of the retinal nerve fiber layer and a significant increase in the vertical cup/disc ratio. Transgenesis in zebrafish and luciferase assays demonstrated that the newly identified 4 bp deletion significantly reduced reporter expression in cells of the retinal ganglion and amacrine layers, where human SIX6 is expressed. CONCLUSION: Altogether, our data further support the implication of SIX6 variants as POAG risk factors and implicates SIX6 haploinsufficiency in POAG pathogenesis.

6.
J Biol Chem ; 290(45): 26927-26942, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26378230

ABSTRACT

A well integrated and hierarchically organized gene regulatory network is responsible for the progressive specification of the forebrain. The transcription factor Six3 is one of the central components of this network. As such, Six3 regulates several components of the network, but its upstream regulators are still poorly characterized. Here we have systematically identified such regulators, taking advantage of the detailed functional characterization of the regulatory region of the medaka fish Six3.2 ortholog and of a time/cost-effective trans-regulatory screening, which complemented and overcame the limitations of in silico prediction approaches. The candidates resulting from this search were validated with dose-response luciferase assays and expression pattern criteria. Reconfirmed candidates with a matching expression pattern were also tested with chromatin immunoprecipitation and functional studies. Our results confirm the previously proposed direct regulation of Pax6 and further demonstrate that Msx2 and Pbx1 are bona fide direct regulators of early Six3.2 distribution in distinct domains of the medaka fish forebrain. They also point to other transcription factors, including Tcf3, as additional regulators of different spatial-temporal domains of Six3.2 expression. The activity of these regulators is discussed in the context of the gene regulatory network proposed for the specification of the forebrain.


Subject(s)
Eye Proteins/genetics , Fish Proteins/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Oryzias/embryology , Oryzias/genetics , Prosencephalon/embryology , Prosencephalon/metabolism , Animals , Animals, Genetically Modified , Body Patterning/genetics , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Oryzias/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Homeobox Protein SIX3
7.
Development ; 137(14): 2307-17, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20534668

ABSTRACT

Timely generation of distinct neural cell types in appropriate numbers is fundamental for the generation of a functional retina. In vertebrates, the transcription factor Six6 is initially expressed in multipotent retina progenitors and then becomes restricted to differentiated retinal ganglion and amacrine cells. How Six6 expression in the retina is controlled and what are its precise functions are still unclear. To address this issue, we used bioinformatic searches and transgenic approaches in medaka fish (Oryzias latipes) to characterise highly conserved regulatory enhancers responsible for Six6 expression. One of the enhancers drove gene expression in the differentiating and adult retina. A search for transcription factor binding sites, together with luciferase, ChIP assays and gain-of-function studies, indicated that NeuroD, a bHLH transcription factor, directly binds an 'E-box' sequence present in this enhancer and specifically regulates Six6 expression in the retina. NeuroD-induced Six6 overexpression in medaka embryos promoted unorganized retinal progenitor proliferation and, most notably, impaired photoreceptor differentiation, with no apparent changes in other retinal cell types. Conversely, Six6 gain- and loss-of-function changed NeuroD expression levels and altered the expression of the photoreceptor differentiation marker Rhodopsin. In addition, knockdown of Six6 interfered with amacrine cell generation. Together, these results indicate that Six6 and NeuroD control the expression of each other and their functions coordinate amacrine cell generation and photoreceptor terminal differentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Transcription Factors/metabolism , Amacrine Cells/metabolism , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Chromatin Immunoprecipitation , Gene Expression , Neurons/metabolism , Oryzias/genetics , Oryzias/metabolism , Photoreceptor Cells , Retina/cytology , Retina/metabolism , Retinal Ganglion Cells/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...