Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent ; 146: 105038, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38714242

ABSTRACT

OBJECTIVES: This laboratory study assessed the performance of a novel fluoride dentifrice containing micro-fibrillated cellulose (MFC) and entrapped silica. METHODS: Removal of extrinsic stains was assessed using the pellicle cleaning ratio (PCR) method, and radioactive dentin abrasivity (RDA) was measured, to calculate a cleaning efficiency index (CEI). Fluoride efficacy was evaluated using widely used remineralization and fluoride uptake methods. The test product (Protegera™) was compared to common dentifrices (Crest - Cavity Protection™ and ProHealth™, Sensodyne Pronamel™, Arm & Hammer™ Advanced Whitening, Crest ProHealth™, and Colgate Optic White™). RESULTS: The PCR for the MFC dentifrice (141) was comparable to three known marketed stain-removing dentifrices (Arm & Hammer™ Advanced Whitening, Crest ProHealth™, and Colgate Optic White™) but it had a significantly lower RDA (88 ± 6) than 5 other products. This gave it the highest CEI of the tested products (2.0). In a 10-day pH cycling study, the fluoride efficacy of the MFC product was comparable to Sensodyne Pronamel and Crest Cavity Protection. The MFC dentifrice was superior for promoting fluoride uptake into incipient enamel lesions compared to the USP reference dentifrice. CONCLUSION: The MFC dentifrice has low abrasion, but despite this, it is highly effective in removing stained pellicle. It also is an efficacious fluoride source when compared to relevant commercially available fluoride dentifrices with high dentin abrasivity. CLINICAL SIGNIFICANCE: The addition of micro-fibrillated cellulose to a fluoride dentifrice gives a low abrasive product that can effectively remove external stains, and serve as an effective fluoride source. This combination of benefits seems well suited to enamel protection and caries prevention.

2.
Dent J (Basel) ; 12(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38248215

ABSTRACT

Dentifrice performance in the removal of dental plaque is influenced by the interactions of dentifrice components with tooth surfaces. This randomized controlled clinical study assessed the effectiveness and safety of a novel fluoride dentifrice formulation that included a micro-fibrillated cellulose network with entangled microcrystalline cellulose and silica particles (ProtegeraTM), and compared this to a positive control fluoride dentifrice (Crest Cavity Protection™). Whole mouth dental plaque levels in 82 healthy adults were measured after the first supervised use, and following a week of twice daily use at home. Overall, the test dentifrice was at least three times and up to four times more effective in whole-mouth plaque reductions, with a 38.6% reduction on first use, a 30.9% reduction at day 7, and a 41.6% reduction from day 1 to day 7, compared to reductions of 12.0%, 9.6% and 11.6%, respectively for the positive control, and up to seven times more effective in lingual plaque reductions, than the reference dentifrice (p < 0.001), with a 27.7% reduction on first use, a 22.3% reduction at day 7, and a 31.0% reduction from day 1 to day 7, compared to reductions of 4.4%, 2.2%, and 4.5%, respectively, for the positive control. No safety issues arose from the use of the test dentifrice. These results indicate that including micro-fibrillated cellulose enhances plaque removal effectiveness, without causing adverse changes to oral soft tissues.

3.
J Microbiol Methods ; 168: 105782, 2020 01.
Article in English | MEDLINE | ID: mdl-31758953

ABSTRACT

OVERVIEW: Effective sample extraction from endoscope channels is crucial for monitoring manual cleaning adequacy as well as for ensuring optimal sensitivity for culture after disinfection. The objective of this study was to compare the efficacy of Turbulent Fluid Flow (TFF) to Flush (F) or Flush-Brush-Flush (FBF) methods. MATERIALS & METHODS: Pseudomonas aeruginosa and Enterococcus faecalis in artificial test soil-2015 (ATS2015) were used as bacterial markers while protein and carbohydrate were the organic markers for biofilm formed inside 3.2-mm and 1.37-mm polytetrafluoroethylene (PTFE) channels. TFF was generated using compressed air and sterile water to provide friction for sample extraction. Extraction for biofilm coated PTFE channels as well as for colonoscope channels perfused with ATS2015 containing 108 CFU/mL P. aeruginosa, E. faecalis and Candida albicans was determined using TFF compared to FBF and F. RESULTS: The extraction ratio for P. aeruginosa and E. faecalis from biofilm extracted by TFF compared to the positive control was significantly better than F for 1.37-mm channels (≥0.94 for both bacteria by TFF versus 0.69 to 0.72 by F for P. aeruginosa and E. faecalis, respectively) but not significantly different between TFF and FBF for 3.2-mm channels. F was also ineffective for extraction of protein and carbohydrate from 1.37-mm channels. Extraction efficacy by TFF from inoculated colonoscope channels was >98% for all test markers. CONCLUSIONS: The novel TFF method for extraction of samples from colonoscope channels is a more effective method than the existing FBF and F methods.


Subject(s)
Disinfection/methods , Endoscopes/microbiology , Equipment Contamination/prevention & control , Hydrodynamics , Biofilms , Candida albicans , Colony Count, Microbial , Enterococcus faecalis , Pseudomonas aeruginosa , Shear Strength
4.
J Memb Sci ; 464: 173-178, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25067872

ABSTRACT

Hemofiltration (HF) is used extensively for continuous renal replacement therapy, but long-term treatment is limited by thrombosis leading to fiber clogging. Maximum filter life is typically less than 20 hours. We have achieved for the first time continuous and consistent hemofiltration for more than 100 hours using outside-in hemofiltration with the blood flow into the inter-fiber space (IFS). Although thrombi do deposit in the IFS, they have minimal affect on the blood flow and filtrate flux due to the three-dimensional system of interconnected hydrodynamic flow channels in the IFS. Microscopic examination of sections of the fiber bundle showed that deposited thrombi have dimensions about the size of the gaps between the hollow fibers and remain isolated from each other. A simple mathematical model is developed to describe the effect of thrombus deposition on the fluid flow that accounts for the enhanced performance arising from the interconnected flow. The hydrodynamic advantage of outside-in HF decreases at low anticoagulant concentration due to the instability in the blood and the very high volume fraction of thrombi that deposit in the entrance zone of the filter. These results clearly demonstrate the significant potential advantages of using outside-in hemofiltration for long-term renal replacement therapy.

5.
Adv Colloid Interface Sci ; 166(1-2): 60-86, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21652020

ABSTRACT

During our investigations of two-phase flow in long hydrophobic minitubes and capillaries, we have observed transformation of the main rivulet into different new hydrodynamic modes with the use of different kinds of surfactants. The destabilization of rivulet flow at air velocities <80 m/s occurs primarily due to the strong branching off of sub-rivulets from the main rivulet during the downstream flow in the tube. The addition of some surfactants of not-so-high surface activity was found to increase the frequency of sub-rivulet formation and to suppress the Rayleigh and sinuous instabilities of the formed sub-rivulets. Such instabilities result in subsequent fragmentation of the sub-rivulets and in the formation of linear or sinuous arrays of sub-rivulet fragments (SRFs), which later transform into random arrays of SRFs. In the downstream flow, SRFs further transform into large sliding cornered droplets and linear droplet arrays (LDAs), a phenomenon which agrees with recent theories. At higher surface activity, suppression of the Rayleigh instability of sub-rivulets with surfactants becomes significant, which prevents sub-rivulet fragmentation, and only the rivulet and sub-rivulets can be visualized in the tube. At the highest surface activity, the bottom rivulet transforms rapidly into an annular liquid film. The surfactant influence on the behavior of the rivulets in minitubes is incomparably stronger than the classic example of the known surfactant stabilizing influence on a free jet. The evolution of a rivulet in the downstream flow inside a long minitube includes the following sequence of hydrodynamic modes/patterns: i) single rivulet; ii) rivulet and sub-rivulets; and iii) rivulet, sub-rivulets, sub-rivulet fragments, cornered droplets, linear droplet arrays, linear arrays of sub-rivulet fragments and annular film. The formation of these many different hydrodynamic patterns downstream is in drastic contrast with the known characteristics of two-phase flow, which demonstrates one mode for the entire tube length. Recent achievements in fluid mechanics regarding the stability of sliding thin films and in wetting dynamics have allowed us to interpret many of our findings. However, the most important phenomenon of the surfactant influence on sub-rivulet formation remains poorly understood. To achieve further progress in this new area, an interdisciplinary approach based on the use of methods of two-phase flow, wetting dynamics and interfacial rheology will be necessary.


Subject(s)
Hydrodynamics , Surface-Active Agents/chemistry , Air , Computer Simulation , Hydrophobic and Hydrophilic Interactions , Image Processing, Computer-Assisted , Surface Properties , Surface-Active Agents/classification
6.
Colloids Surf A Physicochem Eng Asp ; 254(1-3): 331-337, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-21614132

ABSTRACT

A technology is elaborated for the fabrication of a novel tympanostomy tube (TT) from solidified polymer melts (Elvax and Polyurethane) and antibiotics (Ciprofloxacin and Usnic acid) for insertion into tympanic membrane (ear drum) according to the established surgical procedure. The long-term in vitro release kinetics of the antibiotics into liquid water has been assessed using standard methods. The measured kinetic curves revealed two stages of antibiotic release into the finite space. During the first stage (fast), the fast release rate is almost invariant and is determined by the diffusion through the steady diffusion layer formed due to solution agitation. In this first stage, the influence of the initial internal transport is weak because it takes place at negligibly small distance from interface and accordingly, at negligibly concentration drop. After the antibiotic concentration decreases within the much broader layer of matrix near interface, the internal transport becomes important. This manifests itself as the second stage in measured kinetics of release curves which is characterized by a gradual decrease in rate. The minimum inhibition concentrations of three antibiotics/antimicrobial compounds for four bacterial species were measured. The first stage of fast release from the polymer implant lasts 6 days at a polymer loading by Ciprofloxacin (0.03 g/cm(3)) and this was sufficient for preventing biofilm formation on the surface of the implant material. The measured kinetic curves of drug release showed more rapid decrease in the release rate compared to the Higuchi approximation. Comparison with existing theories, which account for the finite rate of drug dissolution, showed that this may explain the observed deviation from the diffusion-controlled Higuchi model. Large dimensions of drug particles and their aggregation retard the dissolution stage and consequently the release rate. Melt blending was found to cause the drug particle aggregation within polymer matrixes which was confirmed by microscopic reexamination of the polymer implant materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...