Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
mBio ; 13(6): e0244622, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36255240

ABSTRACT

As a result of the ongoing virus-host arms race, viruses have evolved numerous immune subversion strategies, many of which are aimed at suppressing the production of type I interferons (IFNs). Apoptotic caspases have recently emerged as important regulators of type I IFN signaling both in noninfectious contexts and during viral infection. Despite being widely considered antiviral factors since they can trigger cell death, several apoptotic caspases promote viral replication by suppressing innate immune response. Indeed, we previously discovered that the AIDS-associated oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) exploits caspase activity to suppress the antiviral type I IFN response and promote viral replication. However, the mechanism of this novel viral immune evasion strategy is poorly understood, particularly with regard to how caspases antagonize IFN signaling during KSHV infection. Here, we show that caspase activity inhibits the DNA sensor cGAS during KSHV lytic replication to block type I IFN induction. Furthermore, we used single-cell RNA sequencing to reveal that the potent antiviral state conferred by caspase inhibition is mediated by an exceptionally small percentage of IFN-ß-producing cells, thus uncovering further complexity of IFN regulation during viral infection. Collectively, these results provide insight into multiple levels of cellular type I IFN regulation that viruses co-opt for immune evasion. Unraveling these mechanisms can inform targeted therapeutic strategies for viral infections and reveal cellular mechanisms of regulating interferon signaling in the context of cancer and chronic inflammatory diseases. IMPORTANCE Type I interferons are key factors that dictate the outcome of infectious and inflammatory diseases. Thus, intricate cellular regulatory mechanisms are in place to control IFN responses. While viruses encode their own immune-regulatory proteins, they can also usurp existing cellular interferon regulatory functions. We found that caspase activity during lytic infection with the AIDS-associated oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus inhibits the DNA sensor cGAS to block the antiviral type I IFN response. Moreover, single-cell RNA sequencing analyses unexpectedly revealed that an exceptionally small subset of infected cells (<5%) produce IFN, yet this is sufficient to confer a potent antiviral state. These findings reveal new aspects of type I IFN regulation and highlight caspases as a druggable target to modulate cGAS activity.


Subject(s)
Acquired Immunodeficiency Syndrome , Herpesviridae Infections , Herpesvirus 8, Human , Interferon Type I , Humans , Antiviral Agents , Caspases , Herpesvirus 8, Human/physiology , Nucleotidyltransferases , Virus Replication , Membrane Proteins/metabolism
2.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021896

ABSTRACT

Due to their roles in the regulation of programmed cell death and inflammation, the cellular caspase proteases are considered antiviral factors. However, recent studies have revealed examples of proviral functions for caspases. Here, we review a growing body of literature on the role of caspases in promoting the replication of human gammaherpesviruses. We propose that gammaherpesviruses have evolved ways to redirect these enzymes and to use their activation to support viral replication and immune evasion.


Subject(s)
Caspases/genetics , Eukaryotic Cells/virology , Gammaherpesvirinae/genetics , Immediate-Early Proteins/genetics , Immune Evasion/genetics , Proviruses/genetics , Animals , Apoptosis , Caspases/immunology , Eukaryotic Cells/immunology , Eukaryotic Cells/metabolism , Evolution, Molecular , Gammaherpesvirinae/immunology , Gammaherpesvirinae/metabolism , Gene Expression Regulation , Humans , Immediate-Early Proteins/immunology , Proviruses/immunology , Proviruses/metabolism , Signal Transduction , Virion/genetics , Virion/immunology , Virion/metabolism , Virus Replication
3.
J Virol ; 92(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29514903

ABSTRACT

An important component of lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is the ability of the virus to evade the innate immune response, specifically type I interferon (IFN) responses that are triggered by recognition of viral nucleic acids. Inhibition of type I IFN responses by the virus promotes viral replication. Here, we report that KSHV uses a caspase-dependent mechanism to block type I IFN, in particular IFN-ß, responses during lytic infection. Inhibition of caspases during KSHV reactivation resulted in increased TBK1/IKKε-dependent phosphorylation of IRF3 as well as elevated levels of IFN-ß transcription and secretion. The increased secretion of IFN-ß upon caspase inhibition reduced viral gene expression, viral DNA replication, and virus production. Blocking IFN-ß production or signaling restored viral replication. Overall, our results show that caspase-mediated regulation of pathogen sensing machinery is an important mechanism exploited by KSHV to evade innate immune responses.IMPORTANCE KSHV is the causative agent of Kaposi's sarcoma (KS), an AIDS-defining tumor that is one of the most common causes of cancer death in sub-Saharan Africa. In this study, we examined the role of a set of cellular proteases, called caspases, in the regulation of immune responses during KSHV infection. We demonstrate that caspases prevent the induction and secretion of the antiviral factor IFN-ß during replicative KSHV infection. The reduced IFN-ß production allows for high viral gene expression and viral replication. Therefore, caspases are important for maintaining KSHV replication. Overall, our results suggest that KSHV utilizes caspases to evade innate immune responses, and that inhibiting caspases could boost the innate immune response to this pathogen and potentially be a new antiviral strategy.


Subject(s)
Caspases/metabolism , DNA Replication , DNA, Viral/biosynthesis , Herpesvirus 8, Human/physiology , Interferon-beta/metabolism , Signal Transduction , Virus Replication , Caspases/genetics , DNA, Viral/genetics , HeLa Cells , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/genetics
4.
Part Part Syst Charact ; 31(12): 1307-1312, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26380538

ABSTRACT

Nanoparticles have garnered widespread interest for both the imaging and treatment of cancer due to their unique and tunable pharmacokinetics and their ability to carry a high payload of diverse compounds. However, despite these favorable attributes, the extent of tumor accumulation can be severely restricted due to the dense stroma surrounding the often-permeable blood vessel wall and high intratumoral pressure. In this study, we investigated whether modifying the surface of pegylated gold nanoparticles (AuNPs) with collagenase could improve the accumulation of nanoparticles within a murine tumor xenograft. It was determined that collagenase remains active after surface conjugation and the presence of collagenase has no measureable effect on cell proliferation in vitro. Following intravenous injection, the largest fractions of collagenase-labeled AuNPs were found in the liver and spleen. Histological analysis revealed no signs of toxicity in either of these organs. Blood chemistry revealed normal levels of liver enzymes, but a slightly elevated level of total bilirubin. Within the tumor, AuNPs labeled with collagenase exhibited a 35% increase in accumulation compared with unlabeled AuNPs. Therefore, these studies provide preliminary evidence that the functionalization of nanoparticles with collagenase represent an effective and safe approach to improve tumor accumulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...