Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Publication year range
1.
Sci Rep ; 11(1): 6687, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758295

ABSTRACT

Intensive use of a few elite sires has increased the risk of the manifestation of deleterious recessive traits in cattle. Substantial genotyping data gathered using single-nucleotide polymorphism (SNP) arrays have identified the haplotypes with homozygous deficiency, which may compromise survival. We developed Japanese Black cattle haplotypes (JBHs) using SNP array data (4843 individuals) and identified deleterious recessive haplotypes using exome sequencing of 517 sires. We identified seven JBHs with homozygous deficiency. JBH_10 and JBH_17 were associated with the resuming of estrus after artificial insemination, indicating that these haplotypes carried deleterious mutations affecting embryonic survival. The exome data of 517 Japanese Black sires revealed that AC_000165.1:g.85341291C>G of IARS in JBH_8_2, AC_000174.1:g.74743512G>T of CDC45 in JBH_17, and a copy variation region (CNVR_27) of CLDN16 in JBH_1_1 and JBH_1_2 were the candidate mutations. A novel variant AC_000174.1:g.74743512G>T of CDC45 in JBH_17 was located in a splicing donor site at a distance of 5 bp, affecting pre-mRNA splicing. Mating between heterozygotes of JBH_17 indicated that homozygotes carrying the risk allele died around the blastocyst stage. Analysis of frequency of the CDC45 risk allele revealed that its carriers were widespread throughout the tested Japanese Black cattle population. Our approach can effectively manage the inheritance of recessive risk alleles in a breeding population.


Subject(s)
Alleles , Genes, Recessive , Haplotypes , Mutation , Animals , Biomarkers , Breeding , Cattle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Copy Number Variations , Embryonic Development , Homozygote , Polymorphism, Single Nucleotide , RNA Splicing , Exome Sequencing
2.
PLoS Genet ; 11(8): e1005433, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26306008

ABSTRACT

Recessive skeletal dysplasia, characterized by joint- and/or hip bone-enlargement, was mapped within the critical region for a major quantitative trait locus (QTL) influencing carcass weight; previously named CW-3 in Japanese Black cattle. The risk allele was on the same chromosome as the Q allele that increases carcass weight. Phenotypic characterization revealed that the risk allele causes disproportional tall stature and bone size that increases carcass weight in heterozygous individuals but causes disproportionately narrow chest width in homozygotes. A non-synonymous variant of FGD3 was identified as a positional candidate quantitative trait nucleotide (QTN) and the corresponding mutant protein showed reduced activity as a guanine nucleotide exchange factor for Cdc42. FGD3 is expressed in the growth plate cartilage of femurs from bovine and mouse. Thus, loss of FDG3 activity may lead to subsequent loss of Cdc42 function. This would be consistent with the columnar disorganization of proliferating chondrocytes in chondrocyte-specific inactivated Cdc42 mutant mice. This is the first report showing association of FGD3 with skeletal dysplasia.


Subject(s)
Bone Diseases, Developmental/veterinary , Cattle Diseases/genetics , Guanine Nucleotide Exchange Factors/genetics , Amino Acid Sequence , Animals , Body Height/genetics , Body Weight/genetics , Bone Diseases, Developmental/genetics , Cattle , DNA Mutational Analysis , Female , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease , Growth Plate/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Haplotypes , Homozygote , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Mutation, Missense , Pedigree , Protein Tyrosine Phosphatases/genetics , Quantitative Trait Loci , Risk
3.
Mol Biol Rep ; 40(4): 3231-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23269620

ABSTRACT

Genetic analyses have contributed to improvements of economically important traits derived from adipose tissue such as fatty acid composition in beef. Elongation of very long chain fatty acids (ELOVL) genes encode for the enzymes that play an important role in elongation of long-chain fatty acids. In this study, we aimed to discover genetic polymorphisms of ELOVL gene family in cattle populations to develop genetic markers. As a result, five synonymous mutations were detected in the coding regions of the ELOVL1, ELOVL2, ELOVL3 and ELOVL5 genes. In addition, six mutations were identified in promoter region of the ELOVL5. Two of five mutations in the promoter region of ELOVL5 were expected to alter the ELOVL5 expression and influence the economic traits, because of the high synteny of the region which was essential for activation of Elovl5 in mouse. Therefore, we performed association analysis between the genotypes and traits and our result revealed that T allele of g.-110T>C in ELOVL5 gene promoter indicated significantly thinner subcutaneous fat thickness (TT, 2.39 cm; CT, 2.35 cm) than that of C allele (CC, 2.68 cm) in a Japanese Black population. Our results suggest that the g.-110T>C is a useful genetic marker for the breeding in beef cattle.


Subject(s)
Acetyltransferases/genetics , Genetic Association Studies , Subcutaneous Fat/growth & development , Animals , Cattle , Fatty Acid Elongases , Mutation , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Synteny
4.
BMC Biotechnol ; 4: 19, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15341664

ABSTRACT

BACKGROUND: We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. RESULTS: A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS) is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. CONCLUSIONS: Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases.


Subject(s)
Combinatorial Chemistry Techniques/methods , DNA/chemical synthesis , Peptide Library , Amino Acid Sequence , Protein Engineering/methods , Protein Engineering/trends
6.
Biochem Biophys Res Commun ; 305(1): 1-5, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12732187

ABSTRACT

Puromycin is a well-known antibiotic that inhibits protein synthesis by competitive incorporation against an aminoacyl tRNA on the ribosome A site. Novel technology using this property of puromycin has been developed for convenient handling methods in protein research. Puromycin modified with another molecule is incorporated into a protein at the C-terminus, thus linking the desired molecule to the protein. Combination of in vitro translation with puromycin analogues has resulted in novel technologies such as display technology for screening, fluorescence labeling, affinity purification, and protein chip for proteomics.


Subject(s)
Biotechnology/methods , Protein Synthesis Inhibitors/chemistry , Proteins/analysis , Puromycin/analogs & derivatives , Chromatography, Affinity , Fluorescent Dyes/chemistry , Models, Genetic , Peptide Library , Protein Array Analysis , Protein Biosynthesis , Proteins/isolation & purification , Proteomics/methods , Puromycin/chemistry , Viruses/genetics
7.
Biol Proced Online ; 4: 49-54, 2002 Oct 28.
Article in English | MEDLINE | ID: mdl-12734569

ABSTRACT

The "in vitro virus" is a molecular construct to perform evolutionary protein engineering. The "virion (=viral particle)" (mRNA-peptide fusion), is made by bonding a nascent protein with its coding mRNA via puromycin in a test tube for in vitro translation. In this work, the puromycin-linker was attached to mRNA using the Y-ligation, which was a method of two single-strands ligation at the end of a double-stranded stem to make a stem-loop structure. This reaction gave a yield of about 95%. We compared the Y-ligation with two other ligation reactions and showed that the Y-ligation gave the best productivity. An efficient amplification of the in vitro virus with this "viral genome" was demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL