Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Med Entomol ; 61(3): 710-718, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38461146

ABSTRACT

Long-lasting insecticide nets (LLINs) are the recommended tools against mosquito-borne diseases. However, their physical integrity and bioefficacy in the field could be affected by several factors. This study evaluated the physical integrity and bioefficacy of nets used in Makenene since 2016. Cross-sectional field surveys were carried out after 6 y. A questionnaire was first administered to the heads of households, and then the physical integrity of the LLINs was determined by calculating the proportional hole index (pHI). WHO cone bioassays were conducted to determine the bioefficacy of LLINs currently being used against wild strains of Anopheles gambiae s.l., Culex pipiens s.l., and laboratory-reared pyrethroid-susceptible strain of Anopheles coluzzii (Ngousso). Of the 167 LLINs examined in households, 39.5% were fairly good, 26.4% were acceptable, and 34.1% were damaged. The most torn faces of the nets were the sides used for entering and exiting. None of the 30 LLINs used for WHO cone bioassays was still effective against An. gambiae s.l. and Cx. pipiens s.l. while up to 85.7% of these LLINs were at least effective against the susceptible strain after 24 h, with a significant difference observed when comparing the mortality rates between wild and laboratory-susceptible strain of Anopheles (P-value < 0.01). Anopheles gambiae s.l. were all (100%) identified as An. gambiae s.s. by PCR. The LLINs distributed in Makenene since the 2016 campaign are only effective on susceptible strain and should be replaced for a better control of residual malaria transmission and the nuisance by Culex mosquitoes in the locality.


Subject(s)
Anopheles , Culex , Insecticide-Treated Bednets , Mosquito Control , Cameroon , Insecticide-Treated Bednets/statistics & numerical data , Anopheles/drug effects , Animals , Cross-Sectional Studies , Insecticides/pharmacology , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/drug effects
2.
Infect Dis Poverty ; 12(1): 81, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37641108

ABSTRACT

BACKGROUND: The increasing reports of resistance to pyrethroid insecticides associated with reduced efficacy of pyrethroid-only interventions highlight the urgency of introducing new non-pyrethroid-only control tools. Here, we investigated the performance of piperonyl-butoxide (PBO)-pyrethroid [Permanet 3.0 (P3.0)] and dual active ingredients (AI) nets [Interceptor G2 (IG2): containing pyrethroids and chlorfenapyr and Royal Guard (RG): containing pyrethroids and pyriproxyfen] compared to pyrethroid-only net Royal Sentry (RS) against pyrethroid-resistant malaria vectors in Cameroon. METHODS: The efficacy of these tools was firstly evaluated on Anopheles gambiae s.l. and Anopheles funestus s.l. from Gounougou, Mibellon, Mangoum, Nkolondom, and Elende using cone/tunnel assays. In addition, experimental hut trials (EHT) were performed to evaluate the performance of unwashed and 20 times washed nets in semi-field conditions. Furthermore, pyrethroid-resistant markers were genotyped in dead vs alive, blood-fed vs unfed mosquitoes after exposure to the nets to evaluate the impact of these markers on net performance. The XLSTAT software was used to calculate the various entomological outcomes and the Chi-square test was used to compare the efficacy of various nets. The odds ratio and Fisher exact test were then used to establish the statistical significance of any association between insecticide resistance markers and bed net efficacy. RESULTS: Interceptor G2 was the most effective net against wild pyrethroid-resistant An. funestus followed by Permanet 3.0. In EHT, this net induced up to 87.8% mortality [95% confidence interval (CI): 83.5-92.1%) and 55.6% (95% CI: 48.5-62.7%) after 20 washes whilst unwashed pyrethroid-only net (Royal Sentry) killed just 18.2% (95% CI: 13.4-22.9%) of host-seeking An. funestus. The unwashed Permanet 3.0 killed up to 53.8% (95% CI: 44.3-63.4%) of field-resistant mosquitoes and 47.2% (95% CI: 37.7-56.7%) when washed 20 times, and the Royal Guard 13.2% (95% CI: 9.0-17.3%) for unwashed net and 8.5% (95% CI: 5.7-11.4%) for the 20 washed net. Interceptor G2, Permanet 3.0, and Royal Guard provided better personal protection (blood-feeding inhibition 66.2%, 77.8%, and 92.8%, respectively) compared to pyrethroid-only net Royal Sentry (8.4%). Interestingly, a negative association was found between kdrw and the chlorfenapyr-based net Interceptor G2 (χ2 = 138; P < 0.0001) with homozygote-resistant mosquitoes predominantly found in the dead ones. CONCLUSIONS: The high mortality recorded with Interceptor G2 against pyrethroid-resistant malaria vectors in this study provides first semi-field evidence of high efficacy against these major malaria vectors in Cameroon encouraging the implementation of this novel net for malaria control in the country. However, the performance of this net should be established in other locations and on other major malaria vectors before implementation at a large scale.


Subject(s)
Anopheles , Malaria , Animals , Cameroon , Malaria/prevention & control , Mosquito Vectors
3.
Malar J ; 22(1): 205, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37407962

ABSTRACT

BACKGROUND: Malaria is the main cause of morbidity and mortality in Cameroon. Insecticide-treated nets (ITNs) significantly reduce malaria transmission, but their use is not common in the population. This study aimed to estimate the nationwide prevalence of the non-use of ITNs and identify its major determinants. METHODS: A cross-sectional study was conducted on interview data collected in households selected across all the regions of Cameroon through a non-probabilistic, random, 2-stage stratified sampling process. Descriptive statistics were used to describe the distribution of baseline characteristics across the households, and statistical tests assessed if the distribution of these characteristics differed significantly based on the non-use of ITNs, with 0.05 serving as a threshold of the p-value for statistical significance. The prevalence of the non-use of ITNs was estimated, and logistic regression models were used to tally the odds ratios of the associations between various factors and the non-use of ITNs, along with their 95% confidence intervals. The sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were determined, and the Hosmer Lemeshow test was used to measure the goodness of fit of each statistical model. RESULTS: Of the 7593 households interviewed, 77% had at least one ITN and 59% of the population used ITNs. Only 72% of the population with at least one ITN used it. The logistic model of the multivariate analysis was significant at a 5% threshold. The AUC was 0.7087 and the error rate was 18.01%. The sensitivity and specificity of the model were 97.56% and 13.70%, respectively. The factors that were associated with ITN use were the presence of sufficient nets in the household (p < 0.0001), the region of residence (p < 0.0001), the level of education of the respondent (p < 0.0001), and the standard of living (p = 0.0286). Sex, age, colour preferences, as well as the shape and size of the nets were not associated with ITN use. CONCLUSIONS: The use of ITNs in Cameroon was low and varied according to specific factors. These identified factors could be used as the foundations of effective sensitization campaigns on the importance of ITNs.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Humans , Prevalence , Cameroon/epidemiology , Cross-Sectional Studies , Malaria/epidemiology , Malaria/prevention & control , Risk Factors , Mosquito Control
4.
Article in English | MEDLINE | ID: mdl-36504597

ABSTRACT

Malaria transmission and prevalence is still not well documented across Cameroon particularly in medium-sized cities or localities representing high transit zone. Different risk factors could be associated with persistence malaria transmission such as population movement from high to low transmission settings. A cross-sectional community-based study was carried out to determine malaria prevalence and risk factors in Makenene, a small city in a forest-savannah which is a crossroads between different parts of the country where travellers usually stop-over day and night to rest. Using malaria diagnostic test (mRDTs from SD-BIOLINE) and microscopy (thin and thick blood smears), 406 participants from 237 households were tested for malaria infection. The prevalence of malaria was high irrespective of the detection method: mRDT (41.87%) or microscopy (38.42%). At household level, 46.41% of households had at least one case of malaria with an average of 1.41 infected individuals per household. Parasite density was also high with the majority of infected individuals (64.74%) bearing more than 500 parasites/µl. Only Plasmodium falciparum was found. The chances of being infected with malaria parasites was almost the same for all participants irrespective of the sleeping behavior, bednet usage, house type and environmental factors. The study supports high malaria transmission in the locality and the need for additional studies on vectors bionomics and transmission patterns.

5.
Malar J ; 21(1): 234, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35932025

ABSTRACT

BACKGROUND: To contribute to the mission of the National Malaria Control Programme (NMCP) and guide future interventions in Cameroon in general, and in Makenene in particular, this study assessed the knowledge, attitudes and practices of the population of Makenene towards the fight against malaria. METHODS: Using a semi-structured questionnaire, a descriptive cross-sectional household community survey was carried out in randomly selected households in Makenene, a locality situated between forest and savannah ecotypes. RESULTS: Out of the 413 households surveyed, all (100%) claimed to have heard of malaria with over 94% (n = 391) associating disease transmission with mosquito bites. The main mosquito control tools used in the area were mosquito nets (92.25%). The majority of participants had good knowledge (55.93%; n = 231), good practices (71.67%, n = 296) but moderate attitudes (47.94%; n = 198) towards malaria control and fight. Good knowledge and practices were recorded mostly in educated persons including public servants and students. Good attitudes were adopted mostly by public servants and students of secondary and higher levels of education. CONCLUSION: In Makenene, the population exhibits good knowledge and practices towards malaria and its control. However, despite high LLINs ownership and use, people still complain about malaria in the area. Control tools should be monitored, repaired or replaced when necessary to support the achievement of the NMCP mission.


Subject(s)
Health Knowledge, Attitudes, Practice , Malaria , Cameroon/epidemiology , Cross-Sectional Studies , Humans , Malaria/epidemiology , Mosquito Control , Surveys and Questionnaires
6.
Pathogens ; 11(2)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35215196

ABSTRACT

Understanding how multiple insecticide resistance mechanisms occur in malaria vectors is essential for efficient vector control. This study aimed at assessing the evolution of metabolic mechanisms and Kdr L995F/S resistance alleles in Anopheles gambiae s.l. from North Cameroon, following long-lasting insecticidal nets (LLINs) distribution in 2011. Female An. gambiae s.l. emerging from larvae collected in Ouro-Housso/Kanadi, Be-Centre, and Bala in 2011 and 2015, were tested for susceptibility to deltamethrin + piperonyl butoxide (PBO) or SSS-tributyl-phosphoro-thrithioate (DEF) synergists, using the World Health Organization's standard protocol. The Kdr L995F/S alleles were genotyped using Hot Ligation Oligonucleotide Assay. Tested mosquitoes identified using PCR-RFLP were composed of An. arabiensis (68.5%), An. coluzzii (25.5%) and An. gambiae (6%) species. From 2011 to 2015, metabolic resistance increased in Ouro-Housso/Kanadi (up to 89.5% mortality to deltametnrin+synergists in 2015 versus <65% in 2011; p < 0.02), while it decreased in Be-Centre and Bala (>95% mortality in 2011 versus 42-94% in 2015; p < 0.001). Conversely, the Kdr L995F allelic frequencies slightly decreased in Ouro-Housso/Kanadi (from 50% to 46%, p > 0.9), while significantly increasing in Be-Centre and Bala (from 0-13% to 18-36%, p < 0.02). These data revealed two evolutionary trends of deltamethrin resistance mechanisms; non-pyrethroid vector control tools should supplement LLINs in North Cameroon.

7.
Parasit Vectors ; 15(1): 53, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35164852

ABSTRACT

BACKGROUND: Cameroon is considering the implementation of indoor residual spraying (IRS) as a complementary measure to control malaria in the context of high pyrethroid resistance in major malaria vectors. Non-pyrethroid insecticide classes such as organophosphates and carbamates may be utilized in IRS due to widespread pyrethroid resistance. However, the success of this strategy depends on good knowledge of the resistance status of malaria vectors to carbamates and organophosphates. Here, we assessed the susceptibility profile of Anopheles gambiae sensu lato with respect to carbamates and organophosphate and the distribution of the molecular mechanism underlying resistance to these insecticides. METHODS: Anopheles gambiae s.l. mosquitoes were collected from nine settings across the country and bio-assayed with bendiocarb, propoxur and pirimiphos-methyl. The Ace-1 target-site G119S mutation was genotyped using a TaqMan assay. To investigate the polymorphism in the Ace-1 gene, a region of 924 base pairs in a sequence of the gene was amplified from both live and dead females of An. gambiae exposed to bendiocarb. RESULTS: Pirimiphos-methyl induced full mortality in An. gambiae s.l. from all study sites, whereas for carbamates, resistance was observed in four localities, with the lowest mortality rate recorded in Mangoum (17.78 ± 5.02% for bendiocarb and 18.61 ± 3.86% for propoxur) in the southern part of Cameroon. Anopheles coluzzii was found to be the predominant species in the northern tropical part of the country where it is sympatric with Anopheles arabiensis. In the localities situated in southern equatorial regions, this species was predominant in urban settings, while An. gambiae was the most abundant species in rural areas. The G119S Ace-1 target-site mutation was detected only in An. gambiae and only in the sites located in southern Cameroon. Phylogenetic analyses showed a clustering according to the phenotype. CONCLUSION: The occurrence of the Ace-1 target-site substitution G119S in An. gambiae s.l. populations highlights the challenge associated with the impending deployment of IRS in Cameroon using carbamates or organophosphates. It is therefore important to think about a resistance management plan including the use of other insecticide classes such as neonicotinoids or pyrrole to guarantee the implementation of IRS in Cameroon.


Subject(s)
Anopheles , Insecticides , Acetylcholinesterase/genetics , Animals , Anopheles/genetics , Cameroon , Carbamates/pharmacology , Female , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Control , Mosquito Vectors/genetics , Mutation , Organophosphates/pharmacology , Phylogeny
8.
Biomed Res Int ; 2019: 9709013, 2019.
Article in English | MEDLINE | ID: mdl-31139663

ABSTRACT

Malaria endemicity in Cameroon greatly varies according to ecological environment. In such conditions, parasitaemia, which is associated with fever, may not always suffice to define an episode of clinical malaria. The evaluation of malaria control intervention strategies mostly consists of identifying cases of clinical malaria and is crucial to promote better diagnosis for accurate measurement of the impact of the intervention. We sought out to define and quantify clinical malaria cases in children from three health districts in the Northern region of Cameroon. A cohort study of 6,195 children aged between 6 and 120 months was carried out during the raining season (July to October) between 2013 and 2014. Differential diagnosis of clinical malaria was performed using the parasite density and axillary temperature. At recruitment, patients with malaria-related symptoms (fever [axillary temperature ≥ 37.5°C], chills, severe malaise, headache, or vomiting) and a malaria positive blood smear were classified under clinical malaria group. The malaria attributable fraction was calculated using logistic regression models. Plasmodium falciparum was responsible for over 91% of infections. Children from Pitoa health district had the highest number of asymptomatic infections (45.60%) compared to those from Garoua and Mayo Oulo. The most suitable cut-off for the association between parasite densities and fever was found among children less than 24 months. Overall, parasite densities that ranged above 3,200 parasites per µl of blood could be used to define the malaria attributable fever cases. In groups of children aged between 24 and 59 months and 60 and 94 months, the optimum cut-off parasite density was 6,400 parasites per µl of blood, while children aged between 95 and 120 months had a cut-off of 800 parasites per µl of blood. In the same ecoepidemiological zone, clinical malaria case definitions are influenced by age and location (health district) and this could be considered when evaluating malaria intervention strategies in endemic areas.


Subject(s)
Malaria/epidemiology , Animals , Cameroon/epidemiology , Child , Cohort Studies , Geography , Humans , Malaria/parasitology , Parasites/physiology , Prevalence , Sensitivity and Specificity
9.
PLoS One ; 14(2): e0212024, 2019.
Article in English | MEDLINE | ID: mdl-30779799

ABSTRACT

The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization's (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70-85% to 49-73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91-97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0-30% in 2011 to 18-61% in 2014-2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon.


Subject(s)
Anopheles/drug effects , Insect Proteins/genetics , Insecticide Resistance , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Anopheles/genetics , Anopheles/growth & development , Cameroon , Female , Gene Frequency , Larva/drug effects , Larva/genetics , Larva/growth & development , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/growth & development , Social Planning , Spatio-Temporal Analysis , Urban Renewal
10.
Wellcome Open Res ; 3: 164, 2018.
Article in English | MEDLINE | ID: mdl-30756096

ABSTRACT

Background: Malaria remains a major public health problem in Cameroon; however, despite reports on the adaptation of anopheline species to urban habitats, there is still not enough information on malaria transmission pattern in urban settings. In the frame of a larval control trial in the city of Yaoundé, we conducted baseline surveys to assess malaria transmission dynamics in this city. Methods: Adult mosquitoes were collected indoors and outdoors using CDC light traps and human landing catches from March 2017 to March 2018 in 30 districts of Yaoundé, Cameroon. Mosquitoes were sorted by genus and identified to the species level using PCR. The TaqMan method and ELISA were used to determine mosquito infection status to Plasmodium. Bioassays were conducted to assess female Anopheles gambiae susceptibility to insecticides. Results: A total of 218,991 mosquitoes were collected. The main malaria vectors were An. gambiae s.l. (n=6154) and An. funestus s.l. (n=229). Of the 1476 An. gambiae s.l. processed by PCR, 92.19% were An. coluzzii and 7.81% An. gambiae. An. funestus s.l. was composed of 93.01% (173/186) An. funestus and 4.84% (13/186) An. leesoni. The average biting rate of anopheline was significantly high outdoor than indoor (P=0.013). Seasonal variation in mosquito abundance and biting rate was recorded. The infection rate by Plasmodium falciparum was 2.13% (104/4893 mosquitoes processed). The annual entomological inoculation rate was found to vary from 0 to 92 infective bites/man/year (ib/m/y). Malaria transmission risk was high outdoor (66.65 ib/m/y) compared to indoor (31.14 ib/m/y). An. gambiae s.l. was found highly resistant to DDT, permethrin and deltamethrin. High prevalence of the West Africa kdr allele 1014F was recorded and this was not found to influence An. gambiae s.l. infection status.   Conclusion: The study suggests high malaria transmission occurring in the city of Yaoundé and call for immediate actions to improve control strategies.

11.
Parasit Vectors ; 10(1): 22, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-28077167

ABSTRACT

BACKGROUND: As part of a study to determine the impact of insecticide resistance on the effectiveness of long-lasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite transmission. METHODS: For four consecutive years (2011-2014), annual cross-sectional sampling of adult mosquitoes was conducted during the peak malaria season (September-October) in three health districts in northern Cameroon. Mosquitoes sampled by human landing catch and pyrethrum spray catch methods were morphologically identified, their ovaries dissected for parity determination and Anopheles gambiae siblings were identified by molecular assay. Infection with P. falciparum and blood meal source in residual fauna of indoor resting anopheline mosquitoes were determined by enzyme-linked-immunosorbent assays. RESULTS: Anopheles gambiae (sensu lato) (s.l.) comprised 18.4% of mosquitoes collected with An. arabiensis representing 66.27% of the sibling species. The proportion of An. rufipes (2.7%) collected was high with a human-biting rate ranging between 0.441 and 11.083 bites/person/night (b/p/n) and an anthropophagic rate of 15.36%. Although overall the members of An. gambiae complex were responsible for most of the transmission with entomological inoculation rates (EIR) reaching 1.221 infective bites/person/night (ib/p/n), An. arabiensis and An. coluzzii were the most implicated. The roles of An. funestus, An. pharoensis and An. paludis were minor. Plasmodium falciparum circumsporozoite protein rate in Anopheles rufipes varied from 0.6 to 5.7% with EIR values between 0.010 and 0.481 ib/p/n. CONCLUSIONS: The study highlights the epidemiological role of An. rufipes alongside the members of the An. gambiae complex, and several other sympatric species in human malaria transmission during the wet season in northern Cameroon. For the first time in Cameroon, An. rufipes has been shown to be an important local malaria vector, emphasising the need to review the malaria entomological profile across the country as pre-requisite to effective vector management strategies.


Subject(s)
Anopheles/parasitology , Insect Vectors/parasitology , Malaria, Falciparum/transmission , Plasmodium falciparum/physiology , Animals , Anopheles/classification , Anopheles/genetics , Anopheles/physiology , Cameroon/epidemiology , Cross-Sectional Studies , Female , Humans , Insect Bites and Stings/epidemiology , Insect Bites and Stings/parasitology , Insect Vectors/classification , Insect Vectors/genetics , Insect Vectors/physiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mosquito Control , Seasons
12.
Parasit Vectors ; 7: 262, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24903710

ABSTRACT

BACKGROUND: Malaria transmission in Cameroon is mediated by a plethora of vectors that are heterogeneously distributed across the country depending on the biotope. To effectively guide malaria control operations, regular update on the role of local Anopheles species is essential. Therefore, an entomological survey was conducted between August 2010 and May 2011 to evaluate the role of the local anopheline population in malaria transmission in three villages of the Ndop health district in the northwest region of Cameroon where malaria is holoendemic, as a means to acquiring evidence based data for improved vector intervention. METHODS: Mosquitoes were sampled both indoor and outdoor for four consecutive nights in each locality during each month of survey. Sampling was done by the human landing catch method on volunteers. Anopheles species were identified morphologically and their ovaries randomly dissected for parity determination. Infection with Plasmodium falciparum was detected by Circumsporozoite protein ELISA. Members of An. gambiae complex were further identified to molecular level by PCR and RFLP PCR. RESULTS: An. ziemanni was the main malaria vector and whether outdoor or indoor. The man biting rate for the vectors ranged from 6.75 to 8.29 bites per person per night (b/p/n). The entomological inoculation rate for this vector species was 0.0278 infectious bites per person per night (ib/p/n) in Mbapishi, 0.034 ib/p/n in Mbafuh, and 0.063 ib/p/n in Backyit. These were by far greater than that for An. gambiae. No difference was observed in the parity rate of these two vectors. PCR analysis revealed the presence of only An. colluzzi (M- form). CONCLUSIONS: An. ziemanni is an important local malaria vector in Ndop health district. The findings provide useful baseline information on the anopheles species composition, their distribution and role in malaria transmission that would guide the implementation of integrated vector management strategies in the locality.


Subject(s)
Anopheles/classification , Anopheles/parasitology , Insect Vectors/parasitology , Malaria/transmission , Animal Distribution , Animals , Biodiversity , Cameroon/epidemiology , Feeding Behavior , Humans , Insect Bites and Stings , Insect Vectors/physiology , Malaria/epidemiology
13.
Acta Trop ; 115(1-2): 131-6, 2010.
Article in English | MEDLINE | ID: mdl-20206111

ABSTRACT

Knowledge of baseline malaria transmission intensity in a given environment is important to guide malaria control interventions. In Cameroon, recent information on malaria transmission intensity is insufficient. Therefore, an entomological study was conducted in four ecologically different sites throughout the country to assess the seasonal patterns in malaria transmission intensity. Anopheles arabiensis was the main vector in six of the nine study sites, while An. gambiae sensu stricto was the most important vector in the other three sites. Clear differences in entomological inoculation rates (EIR) were observed between the study sites, ranging from 0.1 infective bites per person per night in the sahelian zone of the country to 5.5 infective bites per person per night in the forest zone. Based on the observed behaviour of the vectors, insecticide-treated bed nets will be highly effective in controlling malaria. However, in the high transmission areas, additional measures will be needed to reduce the malaria burden to acceptable levels.


Subject(s)
Anopheles/classification , Anopheles/growth & development , Insect Vectors , Malaria/epidemiology , Malaria/transmission , Animals , Cameroon/epidemiology , Female , Humans , Insecticide-Treated Bednets , Malaria/prevention & control , Mosquito Control/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...