Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
JMIR Form Res ; 7: e41974, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064257

ABSTRACT

BACKGROUND: The demand for orthopedic specialist consultations for patients with osteoarthritis in public hospitals is high and continues to grow. Lengthy waiting times are increasingly affecting patients from low socioeconomic and culturally and linguistically diverse backgrounds who are more likely to rely on public health care. OBJECTIVE: This study aimed to co-design a digital health intervention for patients with OA who are waiting for an orthopedic specialist consultation at a public health service, which is located in local government areas (LGAs) of identified social and economic disadvantage. METHODS: The stakeholders involved in the co-design process included the research team; end users (patients); clinicians; academic experts; senior hospital staff; and a research, design, and development agency. The iterative co-design process comprised several key phases, including the collation and refinement of evidence-based information by the research team, with assistance from academic experts. Structured interviews with 16 clinicians (female: n=10, 63%; male: n=6, 38%) and 11 end users (age: mean 64.3, SD 7.2 y; female: n=7, 64%; male: n=4, 36%) of 1-hour duration were completed to understand the requirements for the intervention. Weekly workshops were held with key stakeholders throughout development. A different cohort of 15 end users (age: mean 61.5, SD 9.7 y; female: n=12, 80%; male: n=3, 20%) examined the feasibility of the study during a 2-week testing period. The System Usability Scale was used as the primary measure of intervention feasibility. RESULTS: Overall, 7 content modules were developed and refined over several iterations. Key themes highlighted in the clinician and end user interviews were the diverse characteristics of patients, the hierarchical structure with which patients view health practitioners, the importance of delivering information in multiple formats (written, audio, and visual), and access to patient-centered information as early as possible in the health care journey. All content was translated into Vietnamese, the most widely spoken language following English in the local government areas included in this study. Patients with hip and knee osteoarthritis from culturally and linguistically diverse backgrounds tested the feasibility of the intervention. A mean System Usability Scale score of 82.7 (SD 16) was recorded for the intervention, placing its usability in the excellent category. CONCLUSIONS: Through the co-design process, we developed an evidence-based, holistic, and patient-centered digital health intervention. The intervention was specifically designed to be used by patients from diverse backgrounds, including those with low health, digital, and written literacy levels. The effectiveness of the intervention in improving the physical and mental health of patients will be determined by a high-quality randomized controlled trial.

2.
BMC Musculoskelet Disord ; 24(1): 599, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37481532

ABSTRACT

BACKGROUND: Musculoskeletal conditions, including osteoarthritis (OA), are a leading cause of disability and chronic pain, and are associated with high rates of comorbid depression. However, signs of depression are often masked by pain. The aim of this study was to determine the prevalence and severity of depression and pain in individuals awaiting specialist orthopaedic consultation. A secondary objective was to determine the relationship between pain and depression, irrespective of demographic factors and clinical diagnosis. METHODS: Cross-sectional analysis of individuals awaiting orthopaedic consultation at a public hospital in Melbourne, Australia. Relevant data were extracted from medical records and questionnaires. Descriptive statistics were used to summarise participant characteristics. The patient health questionnaire (PHQ-9) was used to assess depression and a numerical rating scale (NRS) was used to assess pain severity. Multiple linear regression analyses were used to establish the relationship between pain and depression. RESULTS: Nine hundred and eighty-six adults (mean ± standard deviation, age = 54.1 ± 15.7 years, 53.2% women) participated in the study. OA was present in 56% of the population and 34% of the entire population had moderate depression or greater, 19% of which met the criteria for major depressive disorder. Moderate-to-severe pain was present in 79% of individuals with OA and 55% of individuals with other musculoskeletal complaints. Pain was significantly associated with depression scores (ß = 0.84, adjusted R2 = 0.13, P < 0.001), and this relationship remained significant after accounting for gender, age, education and employment status, OA status, number of joints affected and waiting time (ß = 0.91, adjusted R2 = 0.19, P < 0.001). CONCLUSIONS: Depression affects one-third of individuals on an orthopaedic waitlist. A strong link between pain and depression in patients awaiting specialist orthopaedic consultation exists, indicating a need for an integrated approach in addressing pain management and depression to manage this complex and comorbid presentation.


Subject(s)
Chronic Pain , Depressive Disorder, Major , Orthopedics , Adult , Humans , Female , Middle Aged , Aged , Male , Cross-Sectional Studies , Prevalence , Depression/diagnosis , Depression/epidemiology
3.
JBMR Plus ; 6(11): e10667, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36398112

ABSTRACT

Osteoglycin (OGN) is a leucine-rich proteoglycan that has been implicated in the regulation of glucose in animal models. However, its relationship with glucose control in humans is unclear. We examined the effect of high-intensity interval exercise (HIIE) and hyperinsulinemic-euglycemic clamp on circulating levels of OGN as well as whether circulating OGN levels are associated with markers of glycemic control and cardio-metabolic health. Serum was analyzed for OGN (ELISA) levels from 9 middle-aged obese men (58.1 ± 2.2 years, body mass index [BMI] = 33.1 ± 1.4 kg∙m-2, mean ± SEM) and 9 young men (27.8 ± 1.6 years, BMI = 24.4 ± 0.08 kg∙m-2) who previously completed a study involving a euglycemic-hyperinsulinemic clamp at rest and after HIIE (4x4 minutes cycling at approximately 95% peak heart rate (HRpeak), interspersed with 2 minutes of active recovery). Blood pressure, body composition (dual-energy X-ray absorptiometry), and insulin sensitivity (hyperinsulinemic-euglycemic clamp) were assessed. Serum OGN was higher in the young cohort compared with the middle-aged cohort (65.2 ± 10.1 ng/mL versus 36.5 ± 4. 5 ng/mL, p ≤ 0.05). Serum OGN was unaffected by acute HIIE but decreased after the insulin clamp compared with baseline (~-27%, p = 0.01), post-exercise (~-35%, p = 0.01), and pre-clamp (~-32%, p = 0.02) time points, irrespective of age. At baseline, lower circulating OGN levels were associated with increased age, BMI, and fat mass, whereas higher OGN levels were related to lower fasting glucose. Higher OGN levels were associated with a higher glucose infusion rate. Exercise had a limited effect on circulating OGN. The mechanisms by which OGN affects glucose regulation should be explored in the future. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
Bone ; 165: 116545, 2022 12.
Article in English | MEDLINE | ID: mdl-36108920

ABSTRACT

Bone and muscle are closely linked mechanically and biochemically. Bone hormones secreted during bone remodeling might be linked to muscle mass and strength maintenance. Exercise elicits high mechanical strain and is essential for bone health. However, the relationship between commonly used bone turnover markers (BTMs) and muscle function in community dwelling older adults remains unclear. It is also unknown how acute exercise with differing mechanical strain may affect BTMs, and whether baseline muscle function alters BTM responses differently. We tested the hypothesis that BTMs are associated with muscle function, and that acute exercise could change the circulating levels of BTMs. Thirty-five older adults (25 females/10 males, 72.8 ± 6.0 years) participated. Baseline assessments included body composition (DXA), handgrip strength and a physical performance test (PPT) (gait speed, timed-up-and-go [TUG], stair ascent/descent). Leg muscle quality (LMQ) and stair climb power (SCP) were calculated. Participants performed (randomized) 30 min aerobic (AE) (cycling 70%HRPeak) and resistance (RE) (leg press 70%RM, jumping) exercise. Serum ß-isomerized C-terminal telopeptides (ß-CTX), procollagen of type I propeptide (P1NP), total osteocalcin (t)OC and ucOC were assessed at baseline and post-exercise. Data were analyzed using linear mixed models and simple regressions, adjusted for sex. At baseline, higher muscle strength (LMQ, handgrip) was related to higher P1NP, higher SCP was related to higher P1NP and ß-CTX, and better physical performance (lower PPT) related to higher P1NP and ß-CTX (p < 0.05). Exercise, regardless of mode, decreased ß-CTX and tOC (all p < 0.05), while P1NP and ucOC remained unaltered. Higher baseline handgrip strength, SCP and LMQ was associated with lower post-exercise ß-CTX responses, and poorer baseline mobility (increased TUG time) was associated with higher post-exercise ß-CTX. Independently of exercise mode, acute exercise decreased ß-CTX and tOC. Our data suggest that in older adults at baseline, increased BTM levels were linked to better muscle function. Altogether, our data strengthens the evidence for bone-muscle interaction, however, mechanisms behind this specific component of bone-muscle crostalk remain unclear.


Subject(s)
Hand Strength , Procollagen , Aged , Female , Humans , Male , Biomarkers , Bone Remodeling , Collagen Type I , Exercise , Hormones , Muscles , Osteocalcin , Peptide Fragments
5.
Arch Public Health ; 80(1): 103, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35361270

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic, progressive condition that can be effectively managed via conservative treatments including exercise, weight management and education. Offering these treatments contemporaneously and digitally may increase adherence and engagement due to the flexibility and cost-effectiveness of digital program delivery. The objective of this review was to summarise the characteristics of current digital self-management interventions for individuals with OA and synthesise adherence and attrition outcomes. METHODS: Electronic databases were searched for randomised controlled trials utilising digital self-management interventions in individuals with OA. Two reviewers independently screened the search results and extracted data relating to study characteristics, intervention characteristics, and adherence and dropout rates. RESULTS: Eleven studies were included in this review. Intervention length ranged from 6 weeks to 9 months. All interventions were designed for individuals with OA and mostwere multi-component and were constructed around physical activity. The reporting of intervention adherence varied greatly between studies and limited the ability to form conclusions regarding the impact of intervention characteristics. However, of the seven studies that quantified adherence, six reported adherence > 70%. Seven of the included studies reported attrition rates < 20%, with contact and support from researchers not appearing to influence adherence or attrition. CONCLUSIONS: Holistic digital interventions designed for a targeted condition are a promising approach for promoting high adherence and reducing attrition. Future studies should explore how adherence of digital interventions compares to face-to-face interventions and determine potential influencers of adherence.

6.
J Clin Endocrinol Metab ; 107(4): e1426-e1433, 2022 03 24.
Article in English | MEDLINE | ID: mdl-34850904

ABSTRACT

CONTEXT: Osteoglycin (OGN) is a proteoglycan released from bone and muscle which has been associated with markers of metabolic health. However, it is not clear whether the levels of circulating OGN change throughout the adult lifespan or if they are associated with clinical metabolic markers or fitness. OBJECTIVE: We aimed to identify the levels of circulating OGN across the lifespan and to further explore the relationship between OGN and aerobic capacity as well as OGN's association with glucose and HOMA-IR. METHODS: 107 individuals (46 males and 61 females) aged 21-87 years were included in the study. Serum OGN levels, aerobic capacity (VO2peak), glucose, and homeostatic model assessment for insulin resistance (HOMA-IR) were assessed. T-tests were used to compare participant characteristics between sexes. Regression analyses were performed to assess the relationship between OGN and age, and OGN and fitness and metabolic markers. RESULTS: OGN displayed a nonlinear, weak "U-shaped" relationship with age across both sexes. Men had higher levels of OGN than women across the lifespan (ß = 0.23, P = .03). Age and sex explained 16% of the variance in OGN (adjusted R2 = 0.16; P < .001). Higher OGN was associated with higher VO2peak (ß = 0.02, P = .001); however, those aged <50 showed a stronger positive relationship than those aged >50. A higher OGN level was associated with a higher circulating glucose level (ß = 0.17, P < .01). No association was observed between OGN and HOMA-IR. CONCLUSION: OGN was characterized by a U-shaped curve across the lifespan which was similar between sexes. Those with a higher aerobic capacity or higher glucose concentration had higher OGN levels. Our data suggest an association between OGN and aerobic fitness and glucose regulation. Future studies should focus on exploring the potential of OGN as a biomarker for chronic disease.


Subject(s)
Insulin Resistance , Longevity , Biomarkers , Bone and Bones , Female , Glucose , Humans , Intercellular Signaling Peptides and Proteins , Male
7.
Front Public Health ; 9: 655491, 2021.
Article in English | MEDLINE | ID: mdl-34123989

ABSTRACT

Since the beginning of time people explored and developed new technologies to make their activities of daily living less labour intense, more efficient and, consequently, more sedentary. In addition, technological advances in medicine throughout history have led to a substantial increase in life expectancy. However, the combination of increased sedentary behaviour and increased life-expectancy resulted in a sharp increase in overweight and obesity related chronic conditions and illness. Although people may live longer, they are doing so with poorer physical function and a reduced quality of life. In this review we explore how technological advances have influenced people's sedentary behaviour and, through the lens of the affective-reflective theory (ART), we propose a means by which technology could be repurposed to encourage greater engagement in physical activity.


Subject(s)
Quality of Life , Sedentary Behavior , Activities of Daily Living , Exercise , Humans , Technology
8.
Nutrients ; 13(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068953

ABSTRACT

Increased risks of skeletal fractures are common in patients with impaired glucose handling and type 2 diabetes mellitus (T2DM). The pathogenesis of skeletal fragility in these patients remains ill-defined as patients present with normal to high bone mineral density. With increasing cases of glucose intolerance and T2DM it is imperative that we develop an accurate rodent model for further investigation. We hypothesized that a high fat diet (60%) administered to developing male C57BL/6J mice that had not reached skeletal maturity would over represent bone microarchitectural implications, and that skeletally mature mice would better represent adult-onset glucose intolerance and the pre-diabetes phenotype. Two groups of developing (8 week) and mature (12 week) male C57BL/6J mice were placed onto either a normal chow (NC) or high fat diet (HFD) for 10 weeks. Oral glucose tolerance tests were performed throughout the study period. Long bones were excised and analysed for ex vivo biomechanical testing, micro-computed tomography, 2D histomorphometry and gene/protein expression analyses. The HFD increased fasting blood glucose and significantly reduced glucose tolerance in both age groups by week 7 of the diets. The HFD reduced biomechanical strength, both cortical and trabecular indices in the developing mice, but only affected cortical outcomes in the mature mice. Similar results were reflected in the 2D histomorphometry. Tibial gene expression revealed decreased bone formation in the HFD mice of both age groups, i.e., decreased osteocalcin expression and increased sclerostin RNA expression. In the mature mice only, while the HFD led to a non-significant reduction in runt-related transcription factor 2 (Runx2) RNA expression, this decrease became significant at the protein level in the femora. Our mature HFD mouse model more accurately represents late-onset impaired glucose tolerance/pre-T2DM cases in humans and can be used to uncover potential insights into reduced bone formation as a mechanism of skeletal fragility in these patients.


Subject(s)
Bone and Bones/drug effects , Bone and Bones/metabolism , Diet, High-Fat/adverse effects , Animals , Blood Glucose , Body Weight , Core Binding Factor Alpha 1 Subunit , Diabetes Mellitus, Type 2/blood , Disease Models, Animal , Glucose Intolerance , Glucose Tolerance Test , Male , Mice , Mice, Inbred C57BL , Osteocalcin/metabolism , X-Ray Microtomography
9.
Mol Metab ; 49: 101205, 2021 07.
Article in English | MEDLINE | ID: mdl-33684607

ABSTRACT

BACKGROUND: The bone-derived protein osteocalcin (OC), in its undercarboxylated (ucOC) form, has a beneficial effect on energy metabolism and may be a future therapeutic target for metabolic diseases. Increasing evidence suggests a link between ucOC and cardiovascular disease (CVD) development; however, the exact relationship is conflicting and unclear. SCOPE OF REVIEW: The aim of this review was to summarise the current research examining the interaction between OC and vascular dysfunction, the initiating stage in the development of atherosclerosis and CVD. MAJOR CONCLUSIONS: In humans, the association between OC and vascular function is inconsistent. Several studies report that total OC (tOC) is associated with adverse function or beneficial function, whereas others report that tOC and ucOC has no effect on vascular function. The conflicting data are likely due to several methodological inconsistencies, in particular the lack of studies reporting circulating ucOC levels. In animal models, the direct administration of ucOC to isolated blood vessels ex vivo produced minimal changes in endothelial function, but importantly, no adverse responses. Finally, in human endothelial and vascular smooth muscle cells, ucOC treatment did not influence classical markers of cellular function, including endothelin-1, vascular adhesion molecule-1 and monocyte chemoattractant protein-1 after exposure to high glucose and inflammatory conditions. The lack of adverse effects in ex vivo and in vitro studies suggests that ucOC may be targeted as a future therapeutic for metabolic diseases, without the risk of detrimental effects in the vasculature. However, further studies are needed to confirm these findings and to investigate whether there is a direct beneficial influence of ucOC.


Subject(s)
Biomarkers/blood , Cardiovascular Physiological Phenomena , Osteocalcin/blood , Animals , Atherosclerosis , Bone and Bones , Cardiovascular Diseases , Endothelial Cells , Humans , Receptors, G-Protein-Coupled/metabolism
10.
J Cell Physiol ; 236(4): 2840-2849, 2021 04.
Article in English | MEDLINE | ID: mdl-32936958

ABSTRACT

Undercarboxylated osteocalcin (ucOC) improves glucose metabolism; however, its effects on endothelial cell function are unclear. We examined the biological effect of ucOC on endothelial function in animal models ex vivo and human cells in vitro. Isometric tension and immunohistochemistry techniques were used on the aorta of male New Zealand white rabbits and cell culture techniques were used on human aortic endothelial cells (HAECs) to assess the effect of ucOC in normal and high-glucose environments. Overall, ucOC, both 10 and 30 ng/ml, did not significantly alter acetylcholine-induced blood vessel relaxation in rabbits (p > .05). UcOC treatment did not cause any significant changes in the immunoreactivity of cellular signalling markers (p > .05). In HAEC, ucOC did not change any of the assessed outcomes (p > .05). UcOC has no negative effects on endothelial function which is important to reduce the risks of off target adverse effects if it will be used as a therapeutic option for metabolic disease in the future.


Subject(s)
Aorta, Abdominal/drug effects , Endothelial Cells/drug effects , Osteocalcin/pharmacology , Vasodilation/drug effects , Animals , Aorta, Abdominal/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Glucose/pharmacology , Humans , Male , Osteocalcin/toxicity , Rabbits , Vasodilator Agents/pharmacology
11.
Bone ; 143: 115766, 2021 02.
Article in English | MEDLINE | ID: mdl-33227507

ABSTRACT

BACKGROUND: Bone turnover is the cellular machinery responsible for bone integrity and strength and, in the clinical setting, it is assessed using bone turnover markers (BTMs). Acute exercise can induce mechanical stress on bone which is needed for bone remodelling, but to date, there are conflicting results in regards to the effects of varying mechanical stimuli on BTMs. OBJECTIVES: This systematic review examines the effects of acute aerobic, resistance and impact exercises on BTMs in middle and older-aged adults and examines whether the responses are determined by the exercise mode, intensity, age and sex. METHODS: We searched PubMed, SCOPUS, Web of Science and EMBASE up to 22nd April 2020. Eligibility criteria included randomised controlled trials (RCTs) and single-arm studies that included middle-aged (50 to 65 years) and older adults (>65 years) and, a single-bout, acute-exercise (aerobic, resistance, impact) intervention with measurement of BTMs. PROSPERO registration number CRD42020145359. RESULTS: Thirteen studies were included; 8 in middle-aged (n = 275, 212 women/63 men, mean age = 57.9 ± 1.5 years) and 5 in older adults (n = 93, 50 women/43 men, mean age = 68.2 ± 2.2 years). Eleven studies included aerobic exercise (AE, 7 middle-aged/4 older adults), and two included resistance exercise (RE, both middle-aged). AE significantly increased C-terminal telopeptide (CTX), alkaline phosphatase (ALP) and bone-ALP in middle-aged and older adults. AE also significantly increased total osteocalcin (tOC) in middle-aged men and Procollagen I Carboxyterminal Propeptide and Cross-Linked Carboxyterminal Telopeptide of Type I Collagen in older women. RE alone decreased ALP in older adults. In middle-aged adults, RE with impact had no effect on tOC or BALP, but significantly decreased CTX. Impact (jumping) exercise alone increased Procollagen Type 1 N Propeptide and tOC in middle-aged women. CONCLUSION: Acute exercise is an effective tool to modify BTMs, however, the response appears to be exercise modality-, intensity-, age- and sex-specific. There is further need for higher quality and larger RCTs in this area.


Subject(s)
Peptide Fragments , Procollagen , Aged , Alkaline Phosphatase , Biomarkers , Bone Density , Bone Remodeling , Collagen Type I , Exercise , Female , Humans , Male , Middle Aged
12.
PLoS One ; 15(11): e0242774, 2020.
Article in English | MEDLINE | ID: mdl-33237935

ABSTRACT

BACKGROUND: There are conflicting reports on the association of undercarboxylated osteocalcin (ucOC) in cardiovascular disease development, including endothelial function and hypertension. We tested whether ucOC is related to blood pressure and endothelial function in older adults, and if ucOC directly affects endothelial-mediated vasodilation in the carotid artery of rabbits. METHODS: In older adults, ucOC, blood pressure, pulse wave velocity (PWV) and brachial artery flow-mediated dilation (BAFMD) were measured (n = 38, 26 post-menopausal women and 12 men, mean age 73 ± 0.96). The vasoactivity of the carotid artery was assessed in male New Zealand White rabbits following a four-week normal or atherogenic diet using perfusion myography. An ucOC dose response curve (0.3-45 ng/ml) was generated following incubation of the arteries for 2-hours in either normal or high glucose conditions. RESULTS: ucOC levels were higher in normotensive older adults compared to those with stage 2 hypertension (p < 0.05), particularly in women (p < 0.01). In all participants, higher ucOC was associated with lower PWV (p < 0.05), but not BAFMD (p > 0.05). In rabbits, ucOC at any dose did not alter vasoactivity of the carotid artery, either following a normal or an atherogenic diet (p > 0.05). CONCLUSION: Increased ucOC is associated with lower blood pressure and increased arterial stiffness, particularly in post-menopausal women. However, ucOC administration has no direct short-term effect on endothelial function in rabbit arteries. Future studies should explore whether treatment with ucOC, in vivo, has direct or indirect effects on blood vessel function.


Subject(s)
Blood Pressure , Carotid Arteries , Endothelium, Vascular , Hypertension , Osteocalcin/metabolism , Vasodilation , Aged , Animals , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Female , Humans , Hypertension/metabolism , Hypertension/pathology , Hypertension/physiopathology , Male , Rabbits
13.
Ann Nutr Metab ; 76(5): 361-367, 2020.
Article in English | MEDLINE | ID: mdl-33232964

ABSTRACT

BACKGROUND: Evidence suggests that lower serum undercarboxylated osteocalcin (ucOC) may be negatively associated with cardiometabolic health. We investigated whether individuals with a suppression of ucOC following an increase in dietary vitamin K1 exhibit a relative worsening of cardiometabolic risk factors. MATERIALS AND METHODS: Men (n = 20) and women (n = 10) aged 62 ± 10 years participated in a randomized, controlled, crossover study. The primary analysis involved using data obtained from participants following a high vitamin K1 diet (HK; 4-week intervention of increased leafy green vegetable intake). High and low responders were defined based on the median percent reduction (30%) in ucOC following the HK diet. Blood pressure (resting and 24 h), arterial stiffness, plasma glucose, lipid concentrations, and serum OC forms were assessed. RESULTS: Following the HK diet, ucOC and ucOC/tOC were suppressed more (p < 0.01) in high responders (41 and 29%) versus low responders (12 and 10%). The reduction in ucOC and ucOC/tOC was not associated with changes in blood pressure, arterial stiffness, plasma glucose, or lipid concentrations in the high responders (p > 0.05). DISCUSSION/CONCLUSION: Suppression of ucOC via consumption of leafy green vegetables has no negative effects on cardiometabolic health, perhaps, in part, because of cross-talk mechanisms.


Subject(s)
Diet/methods , Eating/physiology , Osteocalcin/blood , Vegetables , Vitamin K 1/administration & dosage , Aged , Blood Glucose/drug effects , Blood Pressure/drug effects , Cardiometabolic Risk Factors , Cross-Over Studies , Female , Humans , Lipids/blood , Male , Metabolic Syndrome/prevention & control , Middle Aged , Plant Leaves , Vascular Stiffness/drug effects
14.
Nutrients ; 12(7)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708633

ABSTRACT

Hyperglycaemia has a toxic effect on blood vessels and promotes coronary artery disease. It is unclear whether the dysfunction caused by hyperglycaemia is blood vessel specific and whether the dysfunction is exacerbated following an atherogenic diet. Abdominal aorta, iliac, and mesenteric arteries were dissected from New Zealand White rabbits following either a 4-week normal or atherogenic diet (n = 6-12 per group). The arteries were incubated ex vivo in control or high glucose solution (20 mM or 40 mM) for 2 h. Isometric tension myography was used to determine endothelial-dependent vasodilation. The atherogenic diet reduced relaxation as measured by area under the curve (AUC) by 25% (p < 0.05), 17% (p = 0.06) and 40% (p = 0.07) in the aorta, iliac, and mesenteric arteries, respectively. In the aorta from the atherogenic diet fed rabbits, the 20 mM glucose altered EC50 (p < 0.05). Incubation of the iliac artery from atherogenic diet fed rabbits in 40 mM glucose altered EC50 (p < 0.05). No dysfunction occurred in the mesentery with high glucose incubation following either the normal or atherogenic diet. High glucose induced endothelial dysfunction appears to be blood vessel specific and the aorta may be the optimal artery to study potential therapeutic treatments of hyperglycaemia induced endothelial dysfunction.


Subject(s)
Arteries , Diet, Atherogenic/adverse effects , Endothelium, Vascular/physiopathology , Glucose/adverse effects , Hyperglycemia/etiology , Acute Disease , Animals , Coronary Artery Disease/etiology , Diabetes Mellitus/etiology , Endothelium, Vascular/metabolism , Humans , In Vitro Techniques , Male , Muscle Relaxation , Nitric Oxide/metabolism , Rabbits
15.
Clin Exp Pharmacol Physiol ; 47(5): 751-758, 2020 05.
Article in English | MEDLINE | ID: mdl-31901211

ABSTRACT

The renin angiotensin system (RAS) regulates fluid balance, blood pressure and maintains vascular tone. The potent vasoconstrictor angiotensin II (Ang II) produced by angiotensin-converting enzyme (ACE) comprises the classical RAS. The non-classical RAS involves the conversion of Ang II via ACE2 into the vasodilator Ang (1-7) to counterbalance the effects of Ang II. Furthermore, ACE2 converts AngA into another vasodilator named alamandine. The over activation of the classical RAS (increased vasoconstriction) and depletion of the non-classical RAS (decreased vasodilation) results in vascular dysfunction. Vascular dysfunction is the leading cause of atherosclerosis and cardiovascular disease (CVD). Additionally, local RAS is expressed in various tissues and regulates cellular functions. RAS dysregulation is involved in other several diseases such as inflammation, renal dysfunction and even cancer growth. An approach in restoring vascular dysfunction and other pathological diseases is to either increase the activity of ACE2 or reduce the effect of the classical RAS by counterbalancing Ang II effects. The antitrypanosomal agent, diminazene aceturate (DIZE), is one approach in activating ACE2. DIZE has been shown to exert beneficial effects in CVD experimental models of hypertension, myocardial infarction, type 1 diabetes and atherosclerosis. Thus, this review focuses on DIZE and its effect in several tissues such as blood vessels, cardiac, renal, immune and cancer cells.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Diminazene/analogs & derivatives , Enzyme Activators/therapeutic use , Renin-Angiotensin System/drug effects , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/physiopathology , Diminazene/adverse effects , Diminazene/therapeutic use , Enzyme Activation , Enzyme Activators/adverse effects , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/physiopathology
16.
Calcif Tissue Int ; 105(5): 546-556, 2019 11.
Article in English | MEDLINE | ID: mdl-31485687

ABSTRACT

Low circulating levels of undercarboxylated osteocalcin (ucOC) is associated with a higher risk of cardiovascular disease, yet whether ucOC has a direct effect on endothelium-dependent vasorelaxation, or in proximity to its postulated receptor, the class CG protein-coupled receptor (GPCR6A), in blood vessels remains unclear. Immunohistochemistry and proximity ligation assays were used to localize the presence of ucOC and GPRC6A and to determine the physical proximity (< 40 nm) in radial artery segments collected from patients undergoing coronary artery bypass surgery (n = 6) which exhibited calcification (determined by Von Kossa) and aorta from New Zealand white rabbits exhibiting atherosclerotic plaques. Endothelium-dependent vasorelaxation was assessed using cumulative doses of acetylcholine in vitro on abdominal aorta of rabbits fed a normal chow diet (n = 10) and a 4-week atherogenic diet (n = 9) pre-incubated with ucOC (10 ng/mL) or vehicle. Both ucOC and GPRC6A were localized in human and rabbit diseased-blood vessels. Proximity ligation assay staining demonstrated physical proximity of ucOC with GPRC6A only within plaques in rabbit arteries and the endothelium layer of rabbit arterioles. Endothelium-dependent vasorelaxation was impaired in atherogenic abdominal aorta compared to healthy aorta and ucOC attenuated this impairment. ucOC attenuated impaired endothelium-dependent vasorelaxation in rabbit abdominal aorta following an atherogenic diet, however, this effect may be independent of GPRC6A. It is important that future studies determine the underlying cellular mechanisms by which ucOC effects blood vessels as well as whether it can be used as a therapeutic agent against the progression of atherosclerosis.


Subject(s)
Coronary Artery Disease , Endothelium, Vascular/drug effects , Osteocalcin/pharmacology , Vasodilation/drug effects , Animals , Coronary Artery Disease/metabolism , Humans , Osteocalcin/metabolism , Rabbits , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
17.
Endocr Connect ; 8(2): 111-119, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30673629

ABSTRACT

The aim of this study was to investigate the effect of a single dose of prednisolone on (A) high-intensity interval cycling performance and (B) post-exercise metabolic, hormonal and haematological responses. Nine young men participated in this double-blind, randomised, cross-over study. The participants completed exercise sessions (4 × 4 min cycling bouts at 90-95% of peak heart rate), 12 h after ingesting prednisolone (20 mg) or placebo. Work load was adjusted to maintain the same relative heart rate between the sessions. Exercise performance was measured as total work performed. Blood samples were taken at rest, immediately post exercise and up to 3 h post exercise. Prednisolone ingestion decreased total work performed by 5% (P < 0.05). Baseline blood glucose was elevated following prednisolone compared to placebo (P < 0.001). Three hours post exercise, blood glucose in the prednisolone trial was reduced to a level equivalent to the baseline concentration in the placebo trial (P > 0.05). Prednisolone suppressed the increase in blood lactate immediately post exercise (P < 0.05). Total white blood cell count was elevated at all time-points with prednisolone (P < 0.01). Androgens and sex hormone-binding globulin were elevated immediately after exercise, irrespective of prednisolone or placebo. In contrast, prednisolone significantly reduced the ratio of testosterone/luteinizing hormone (P < 0.01). Acute prednisolone treatment impairs high-intensity interval cycling performance and alters metabolic and haematological parameters in healthy young men. Exercise may be an effective tool to minimise the effect of prednisolone on blood glucose levels.

18.
Nutrients ; 10(10)2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30287742

ABSTRACT

There is increasing evidence for the involvement of the skeleton in the regulation of atherosclerotic vascular disease. Osteocalcin, an osteoblast derived protein, exists in two forms, carboxylated and undercarboxylated osteocalcin. Undercarboxylated osteocalcin has been linked to the regulation of metabolic functions, including glucose and lipid metabolism. Features of atherosclerosis have been associated with circulating osteocalcin; however, this association is often conflicting and unclear. Therefore, the aim of this review is to examine the evidence for a role of osteocalcin in atherosclerosis development and progression, and in particular endothelial dysfunction and vascular calcification. The current literature suggests that undercarboxylated osteocalcin stimulates the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway to upregulate nitric oxide and nuclear factor kappa ß (NF-кß) in vascular cells, possibly protecting endothelial function and preventing atherogenesis. However, this effect may be mediated by metabolic factors, such as improvements in insulin signaling, rather than through a direct effect on the vasculature. Total osteocalcin is frequently associated with vascular calcification, an association that may occur as a result of vascular cells eliciting an osteogenic phenotype. Whether osteocalcin acts as a mediator or a marker of vascular calcification is currently unclear. As such, further studies that examine each form of osteocalcin are required to elucidate if it is a mediator of atherogenesis, and whether it functions independently of metabolic factors.


Subject(s)
Atherosclerosis/metabolism , Endothelium, Vascular/metabolism , Osteocalcin/blood , Vascular Calcification/blood , Atherosclerosis/blood , Blood Glucose/metabolism , Blood Vessels/metabolism , Carbon Dioxide/metabolism , Humans , Insulin/blood , Lipid Metabolism , NF-kappa B/blood , Nitric Oxide/blood , Phosphatidylinositol 3-Kinases/blood , Proto-Oncogene Proteins c-akt/blood , Signal Transduction , Vascular Diseases
19.
J Sci Med Sport ; 20(6): 543-548, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28179068

ABSTRACT

OBJECTIVES: Glucocorticoids (GC) are commonly used in the treatment of inflammatory conditions. Chronic GC administration has severe side effects that can decrease exercise capacity and, as a result performance. The side effects of acute (single dose) and short term (<7 days) GC administration are less severe, therefore the impact on exercise performance is unclear. Consequently, it is of interest to determine the influence of acute and short term GC administration on exercise capacity and performance and investigate the relationship with metabolism. DESIGN: Review article. METHODS: Included in the review were studies with healthy volunteers that reported exercise capacity and performance outcomes following acute and short term GC ingestion. Additionally, the relationship of exercise, GC ingestion and metabolism was investigated. RESULTS: Acute GC treatment appears to have minimal effects on exercise performance at intensities between 60 and 90% of VO2max. Short term GC treatment improved performance in the majority of studies at various exercise intensities. In general, blood glucose values increased whilst insulin and lactate values remained unchanged following GC administration. However, inconsistencies in metabolic results are present and may be due to variations in exercise protocols and the type and dosage of drug treatments. CONCLUSIONS: Acute GC administration has a minimal effect on exercise capacity and performance while short-term GC administration is likely to improve performance. Future studies should focus on the effects of GC on exercise performance and exercise metabolism during and post exercise to determine the effects on exercise capacity.


Subject(s)
Energy Metabolism/drug effects , Glucocorticoids/pharmacology , Physical Endurance/drug effects , Physical Fitness , Dose-Response Relationship, Drug , Drug Administration Schedule , Heart Rate/drug effects , Humans , Oxygen Consumption/drug effects , Physical Exertion/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...