Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Nat ; 30(1): 71-97, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30552578

ABSTRACT

Identifying the determinants of reproductive success in small-scale societies is critical for understanding how natural selection has shaped human evolution and behavior. The available evidence suggests that status-accruing behaviors such as hunting and prosociality are pathways to reproductive success, but social egalitarianism may diminish this pathway. Here we introduce a mixed longitudinal/cross-sectional dataset based on 45 years of research with the Batek, a population of egalitarian rain forest hunter-gatherers in Peninsular Malaysia, and use it to test the effects of four predictors of lifetime reproductive success: (i) foraging return rate, (ii) sharing proclivity, (iii) cooperative foraging tendency, and (iv) kin presence. We found that none of these factors can explain variation in lifetime reproduction among males or females. We suggest that social egalitarianism, combined with strikingly low infant and juvenile mortality rates, can mediate the pathway between foraging, status-accruing behavior, and reproductive success. Our approach advocates for greater theoretical and empirical attention to quantitative social network measures, female foraging, and fitness outcomes.


Subject(s)
Exploratory Behavior/physiology , Family , Feeding Behavior/physiology , Reproduction/physiology , Social Behavior , Adolescent , Adult , Cooperative Behavior , Cross-Sectional Studies , Female , Humans , Malaysia , Male , Population Groups , Young Adult
2.
Proc Biol Sci ; 285(1890)2018 11 07.
Article in English | MEDLINE | ID: mdl-30404871

ABSTRACT

The convergent evolution of the human pygmy phenotype in tropical rainforests is widely assumed to reflect adaptation in response to the distinct ecological challenges of this habitat (e.g. high levels of heat and humidity, high pathogen load, low food availability, and dense forest structure), yet few precise adaptive benefits of this phenotype have been proposed. Here, we describe and test a biomechanical model of how the rainforest environment can alter gait kinematics such that short stature is advantageous in dense habitats. We hypothesized that environmental constraints on step length in rainforests alter walking mechanics such that taller individuals are expected to walk more slowly due to their inability to achieve preferred step lengths in the rainforest. We tested predictions from this model with experimental field data from two short-statured populations that regularly forage in the rainforest: the Batek of Peninsular Malaysia and the Tsimane of the Bolivian Amazon. In accordance with model expectations, we found stature-dependent constraints on step length in the rainforest and concomitant reductions in walking speed that are expected to compromise foraging efficiency. These results provide the first evidence that the human pygmy phenotype is beneficial in terms of locomotor performance and highlight the value of applying laboratory-derived biomechanical models to field settings for testing evolutionary hypotheses.


Subject(s)
Adaptation, Biological , Body Height , Locomotion , Phenotype , Rainforest , Biomechanical Phenomena , Bolivia , Humans , Malaysia , Male , Models, Biological , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL