Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39274967

ABSTRACT

Essential oils (EOs) and plant extracts, rich in beneficial chemical compounds, have diverse applications in medicine, food, cosmetics, and agriculture. This study investigates the antibacterial activity of nine essential oil constituents (EOCs) against Escherichia coli, focusing on the effects of treatment pH and biosynthetic requirements. The impact of EOCs on bacterial inactivation in E. coli strains was examined using both nonselective and selective culture media. Computer-assisted drug design (CADD) methods were employed to identify critical binding sites and predict the main binding modes of ligands to proteins. The EOCs, including citral, α-terpinyl acetate, α-terpineol, and linalool, demonstrated significant bacterial inactivation, particularly under acidic conditions. This study revealed that EOCs have an effect on the presence of sublethal damage to both the cytoplasmic membrane and the outer membrane in Gram-negative bacteria. Adding penicillin G to the repair medium prevents the recovery of sublethal injuries in E. coli treated with α-terpinyl acetate, α-terpineol, linalool, and citral, indicating that peptidoglycan synthesis is essential for recovering from these injuries. However, penicillin G did not hinder the recovery process of most sublethally injured cells treated with the other assessed EOCs. Molecular docking studies revealed the favorable binding interactions of α-terpinyl acetate, α-terpineol, linalool, and citral with the ß-lactamase enzyme Toho-1, indicating their potential as effective antibacterial agents. The findings suggest that EOCs could serve as viable alternatives to synthetic preservatives, offering new strategies for combating antibiotic-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry
2.
J Biomol Struct Dyn ; 41(22): 12908-12922, 2023.
Article in English | MEDLINE | ID: mdl-36709428

ABSTRACT

Transmembrane protease serine 2 (TMPRSS2) has been identified as a critical key for the entry of coronaviruses into human cells by cleaving and activating the spike protein of SARS-CoV-2. To block the TMPRSS2 function, 18 approved drugs, containing the guanidine group were tested against TMPRSS2's ectodomain (7MEQ). Among these drugs, Famotidine, Argatroban, Guanadrel and Guanethidine strongly binds with TMPRSS2 S1 pocket with estimated Fullfitness energies of -1847.12, -1630.87, -1605.81 and -1600.52 kcal/mol, respectively. A significant number of non-covalent interactions such as hydrogen bonding, hydrophobic and electrostatic interactions were detected in protein-ligand complexes. In addition, the ADMET analysis revealed a perfect concurrence with the aptitude of these drugs to be developed as an anti-SARS-CoV-2 therapeutics. Further, MD simulation and binding free energy calculations were performed to evaluate the dynamic behavior and stability of protein-ligand complexes. The results obtained herein highlight the enhanced stability and good binding affinities of the Argatroban and Famotidine towards the target protein, hence might act as new scaffolds for TMPRSS2 inhibition.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Humans , COVID-19 Drug Treatment , Famotidine , Ligands , SARS-CoV-2 , Antihypertensive Agents , Guanidines/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Serine Endopeptidases
3.
J Mol Graph Model ; 101: 107758, 2020 12.
Article in English | MEDLINE | ID: mdl-33007575

ABSTRACT

A novel strain of coronavirus, namely, SARS-CoV-2 identified in Wuhan city of China in December 2019, continues to spread at a rapid rate worldwide. There are no specific therapies available and investigations regarding the treatment of this disease are still lacking. In order to identify a novel potent inhibitor, we performed blind docking studies on the main virus protease Mpro with eight approved drugs belonging to four pharmacological classes such as: anti-malarial, anti-bacterial, anti-infective and anti-histamine. Among the eight studied compounds, Lymecycline and Mizolastine appear as potential inhibitors of this protease. When docked against Mpro crystal structure, these two compounds revealed a minimum binding energy of -8.87 and -8.71 kcal/mol with 168 and 256 binding modes detected in the binding substrate pocket, respectively. Further, to study the interaction mechanism and conformational dynamics of protein-ligand complexes, Molecular dynamic simulation and MM/PBSA binding free calculations were performed. Our results showed that both Lymecycline and Mizolastine bind in the active site. And exhibited good binding affinities towards target protein. Moreover, the ADMET analysis also indicated drug-likeness properties. Thus it is suggested that the identified compounds can inhibit Chymotrypsin-like protease (3CLpro) of SARS-CoV-2.


Subject(s)
Cysteine Endopeptidases/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Animals , Anti-Bacterial Agents/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Binding Sites , Computer Simulation , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Databases, Pharmaceutical , Drug Approval , Drug Repositioning , Histamine Antagonists/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacokinetics , Viral Nonstructural Proteins/metabolism
4.
J Biochem Mol Toxicol ; 31(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28245079

ABSTRACT

Snake venom metalloproteinases are the most abundant toxins in Viperidae venoms. In this study, a new hemorrhagin, Cc HSM-III (66 kDa), was purified from Cerastes cerastes venom by gel filtration, ion exchange, and reversed-phase high-performance liquid chromatographies. The analysis of Cc HSM-III by liquid chromatography with a tandem mass spectrometry revealed 32 peptides sharing a homology with P-III metalloproteinases from Echis ocellatus snake venom. Cc HSM-III displays hemorrhagic activity with a minimal hemorrhagic dose of 5 µg, which is abolished by ethylene diamine tetracetic acid but not by phenylmethylsulfonyl fluoride. The mechanism underlying Cc HSM-III hemorrhagic activity is probably due to its extensive proteolytic activity against type IV collagen. Cc HSM-III induces local tissue damage and an inflammatory response by upregulating both matrix metalloproteinase 2 and 9 in skin of mice. Thus, Cc HSM-III may play a key role in the pathogenesis of C. cerastes envenomation.


Subject(s)
Hemorrhage/chemically induced , Metalloproteases , Viper Venoms/chemistry , Viperidae , Animals , Hemorrhage/metabolism , Hemorrhage/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Metalloproteases/chemistry , Metalloproteases/isolation & purification , Metalloproteases/toxicity , Mice , Skin/metabolism , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL