Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 29(9): 1365-1378, 2023 09.
Article in English | MEDLINE | ID: mdl-37217261

ABSTRACT

RNA structure regulates bacterial gene expression by several distinct mechanisms via environmental and cellular stimuli, one of which is temperature. While some genome-wide studies have focused on heat shock treatments and the subsequent transcriptomic changes, soil bacteria are less likely to experience such rapid and extreme temperature changes. Though RNA thermometers (RNATs) have been found in 5' untranslated leader regions (5' UTRs) of heat shock and virulence-associated genes, this RNA-controlled mechanism could regulate other genes as well. Using Structure-seq2 and the chemical probe dimethyl sulfate (DMS) at four growth temperatures ranging from 23°C to 42°C, we captured a dynamic response of the Bacillus subtilis transcriptome to temperature. Our transcriptome-wide results show RNA structural changes across all four temperatures and reveal nonmonotonic reactivity trends with increasing temperature. Then, focusing on subregions likely to contain regulatory RNAs, we examined 5' UTRs to identify large, local reactivity changes. This approach led to the discovery of RNATs that control the expression of glpF (glycerol permease) and glpT (glycerol-3-phosphate permease); expression of both genes increased with increased temperature. Results with mutant RNATs indicate that both genes are controlled at the translational level. Increased import of glycerols at high temperatures could provide thermoprotection to proteins.


Subject(s)
Thermometers , Transcriptome , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Glycerol , 5' Untranslated Regions , Temperature , RNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial
2.
Nucleic Acids Res ; 51(4): 1859-1879, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36727461

ABSTRACT

Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5'UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5'UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.


Subject(s)
Eukaryotic Initiation Factor-4A , Protein Biosynthesis , 5' Untranslated Regions , Purines , RNA, Messenger/metabolism , Humans , Eukaryotic Initiation Factor-4A/metabolism
3.
RNA ; 26(10): 1431-1447, 2020 10.
Article in English | MEDLINE | ID: mdl-32611709

ABSTRACT

RNA structure influences numerous processes in all organisms. In bacteria, these processes include transcription termination and attenuation, small RNA and protein binding, translation initiation, and mRNA stability, and can be regulated via metabolite availability and other stresses. Here we use Structure-seq2 to probe the in vivo RNA structurome of Bacillus subtilis grown in the presence and absence of amino acids. Our results reveal that amino acid starvation results in lower overall dimethyl sulfate (DMS) reactivity of the transcriptome, indicating enhanced protection owing to protein binding or RNA structure. Starvation-induced changes in DMS reactivity correlated inversely with transcript abundance changes. This correlation was particularly pronounced in genes associated with the stringent response and CodY regulons, which are involved in adaptation to nutritional stress, suggesting that RNA structure contributes to transcript abundance change in regulons involved in amino acid metabolism. Structure-seq2 accurately reported on four known amino acid-responsive riboswitches: T-box, SAM, glycine, and lysine riboswitches. Additionally, we discovered a transcription attenuation mechanism that reduces yfmG expression when amino acids are added to the growth medium. We also found that translation of a leader peptide (YfmH) encoded just upstream of yfmG regulates yfmG expression. Our results are consistent with a model in which a slow rate of yfmH translation caused by limitation of the amino acids encoded in YfmH prevents transcription termination in the yfmG leader region by favoring formation of an overlapping antiterminator structure. This novel RNA switch offers a way to simultaneously monitor the levels of multiple amino acids.


Subject(s)
Amino Acids/genetics , Bacillus subtilis/genetics , Bacterial Proteins/genetics , RNA, Bacterial/genetics , Gene Expression Regulation, Bacterial/genetics , Nucleic Acid Conformation , RNA Stability/genetics , Transcription, Genetic/genetics , Transcriptome/genetics
4.
RNA ; 26(4): 492-511, 2020 04.
Article in English | MEDLINE | ID: mdl-31937672

ABSTRACT

Little is known concerning the effects of abiotic factors on in vivo RNA structures. We applied Structure-seq to assess the in vivo mRNA structuromes of Arabidopsis thaliana under salinity stress, which negatively impacts agriculture. Structure-seq utilizes dimethyl sulfate reactivity to identify As and Cs that lack base-pairing or protection. Salt stress refolded transcripts differentially in root versus shoot, evincing tissue specificity of the structurome. Both tissues exhibited an inverse correlation between salt stress-induced changes in transcript reactivity and changes in abundance, with stress-related mRNAs showing particular structural dynamism. This inverse correlation is more pronounced in mRNAs wherein the mean reactivity of the 5'UTR, CDS, and 3'UTR concertedly change under salinity stress, suggesting increased susceptibility to abundance control mechanisms in transcripts exhibiting this phenomenon, which we name "concordancy." Concordant salinity-induced increases in reactivity were notably observed in photosynthesis genes, thereby implicating mRNA structural loss in the well-known depression of photosynthesis by salt stress. Overall, changes in secondary structure appear to impact mRNA abundance, molding the functional specificity of the transcriptome under stress.


Subject(s)
RNA, Messenger/chemistry , Salt Tolerance , 3' Untranslated Regions , 5' Untranslated Regions , Arabidopsis , Nucleic Acid Conformation , Organ Specificity , Plant Roots/metabolism , Plant Shoots/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
5.
Genome Biol ; 20(1): 300, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31888698

ABSTRACT

BACKGROUND: The RNA helicase eIF4A1 is a key component of the translation initiation machinery and is required for the translation of many pro-oncogenic mRNAs. There is increasing interest in targeting eIF4A1 therapeutically in cancer, thus understanding how this protein leads to the selective re-programming of the translational landscape is critical. While it is known that eIF4A1-dependent mRNAs frequently have long GC-rich 5'UTRs, the details of how 5'UTR structure is resculptured by eIF4A1 to enhance the translation of specific mRNAs are unknown. RESULTS: Using Structure-seq2 and polysome profiling, we assess global mRNA structure and translational efficiency in MCF7 cells, with and without eIF4A inhibition with hippuristanol. We find that eIF4A inhibition does not lead to global increases in 5'UTR structure, but rather it leads to 5'UTR remodeling, with localized gains and losses of structure. The degree of these localized structural changes is associated with 5'UTR length, meaning that eIF4A-dependent mRNAs have greater localized gains of structure due to their increased 5'UTR length. However, it is not solely increased localized structure that causes eIF4A-dependency but the position of the structured regions, as these structured elements are located predominantly at the 3' end of the 5'UTR. CONCLUSIONS: By measuring changes in RNA structure following eIF4A inhibition, we show that eIF4A remodels local 5'UTR structures. The location of these structural elements ultimately determines the dependency on eIF4A, with increased structure just upstream of the CDS being the major limiting factor in translation, which is overcome by eIF4A activity.


Subject(s)
5' Untranslated Regions , Eukaryotic Initiation Factor-4A/metabolism , RNA, Messenger/metabolism , Codon, Initiator , Humans , MCF-7 Cells , Sterols
6.
Proc Natl Acad Sci U S A ; 115(48): 12170-12175, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30413617

ABSTRACT

The heat shock response is crucial for organism survival in natural environments. RNA structure is known to influence numerous processes related to gene expression, but there have been few studies on the global RNA structurome as it prevails in vivo. Moreover, how heat shock rapidly affects RNA structure genome-wide in living systems remains unknown. We report here in vivo heat-regulated RNA structuromes. We applied Structure-seq chemical [dimethyl sulfate (DMS)] structure probing to rice (Oryza sativa L.) seedlings with and without 10 min of 42 °C heat shock and obtained structural data on >14,000 mRNAs. We show that RNA secondary structure broadly regulates gene expression in response to heat shock in this essential crop species. Our results indicate significant heat-induced elevation of DMS reactivity in the global transcriptome, revealing RNA unfolding over this biological temperature range. Our parallel Ribo-seq analysis provides no evidence for a correlation between RNA unfolding and heat-induced changes in translation, in contrast to the paradigm established in prokaryotes, wherein melting of RNA thermometers promotes translation. Instead, we find that heat-induced DMS reactivity increases correlate with significant decreases in transcript abundance, as quantified from an RNA-seq time course, indicating that mRNA unfolding promotes transcript degradation. The mechanistic basis for this outcome appears to be mRNA unfolding at both 5' and 3'-UTRs that facilitates access to the RNA degradation machinery. Our results thus reveal unexpected paradigms governing RNA structural changes and the eukaryotic RNA life cycle.


Subject(s)
Genome, Plant , Heat-Shock Response , Oryza/physiology , RNA, Messenger/metabolism , RNA, Plant/genetics , Hot Temperature , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Plant/metabolism , Transcriptome
7.
Methods ; 143: 12-15, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29410279

ABSTRACT

The secondary structure of an RNA is often implicit to its function. Recently, various high-throughput RNA structure probing techniques have been developed to elucidate important RNA structure-function relationships genome-wide. These techniques produce unwieldy experimental data sets that require evaluation with unique computational pipelines. Herein, we present StructureFold2, a user-friendly set of analysis tools that makes precise data processing and detailed downstream analyses of such data sets both available and practical. StructureFold2 processes high-throughput reads sequenced from libraries prepared after experimental probing for reverse transcription (RT) stops generated by chemical modification of RNA at solvent accessible residues. This pipeline is able to analyze reads generated from a variety of structure-probing chemicals (e.g. DMS, glyoxal, SHAPE). Notably, StructureFold2 offers a new fully featured suite of utilities and tools to guide a user through multiple types of analyses. A particular emphasis is placed on analyzing the reactivity patterns of transcripts, complementing their use as folding restraints for predicting RNA secondary structure. StructureFold2 is hosted as a Github repository and is available at (https://github.com/StructureFold2/StructureFold2).


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Nucleic Acid Conformation , RNA/chemistry , Sequence Analysis, RNA/methods , Algorithms , Computational Biology/instrumentation , Gene Expression Profiling/instrumentation , Genome , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , RNA/genetics , Sequence Analysis, RNA/instrumentation , Software , Transcriptome/genetics
8.
Nucleic Acids Res ; 45(14): e135, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28637286

ABSTRACT

RNA serves many functions in biology such as splicing, temperature sensing, and innate immunity. These functions are often determined by the structure of RNA. There is thus a pressing need to understand RNA structure and how it changes during diverse biological processes both in vivo and genome-wide. Here, we present Structure-seq2, which provides nucleotide-resolution RNA structural information in vivo and genome-wide. This optimized version of our original Structure-seq method increases sensitivity by at least 4-fold and improves data quality by minimizing formation of a deleterious by-product, reducing ligation bias, and improving read coverage. We also present a variation of Structure-seq2 in which a biotinylated nucleotide is incorporated during reverse transcription, which greatly facilitates the protocol by eliminating two PAGE purification steps. We benchmark Structure-seq2 on both mRNA and rRNA structure in rice (Oryza sativa). We demonstrate that Structure-seq2 can lead to new biological insights. Our Structure-seq2 datasets uncover hidden breaks in chloroplast rRNA and identify a previously unreported N1-methyladenosine (m1A) in a nuclear-encoded Oryza sativa rRNA. Overall, Structure-seq2 is a rapid, sensitive, and unbiased method to probe RNA in vivo and genome-wide that facilitates new insights into RNA biology.


Subject(s)
Gene Expression Profiling/methods , Genome, Plant/genetics , Nucleic Acid Conformation , RNA, Plant/chemistry , Base Sequence , Electrophoresis, Polyacrylamide Gel , Models, Genetic , Oryza/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Reverse Transcription/genetics , Sequence Analysis, DNA , Sulfuric Acid Esters/chemistry
9.
Genetics ; 198(4): 1473-81, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25326238

ABSTRACT

Gene and genome duplication events have created a large number of new genes in plants that can diverge by evolving new expression profiles and functions (neofunctionalization) or dividing extant ones (subfunctionalization). Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or downregulation of gene expression by transcript decay. Using RNA-seq, we investigated the degree to which alternative splicing patterns are conserved between duplicated genes in Arabidopsis thaliana. Our results revealed that 30% of AS events in α-whole-genome duplicates and 33% of AS events in tandem duplicates are qualitatively conserved within leaf tissue. Loss of ancestral splice forms, as well as asymmetric gain of new splice forms, may account for this divergence. Conserved events had different frequencies, as only 31% of shared AS events in α-whole-genome duplicates and 41% of shared AS events in tandem duplicates had similar frequencies in both paralogs, indicating considerable quantitative divergence. Analysis of published RNA-seq data from nonsense-mediated decay (NMD) mutants indicated that 85% of α-whole-genome duplicates and 89% of tandem duplicates have diverged in their AS-induced NMD. Our results indicate that alternative splicing shows a high degree of divergence between paralogs such that qualitatively conserved alternative splicing events tend to have quantitative divergence. Divergence in AS patterns between duplicates may be a mechanism of regulating expression level divergence.


Subject(s)
Alternative Splicing , Arabidopsis/genetics , Gene Expression Profiling , Genes, Duplicate , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Plant , Nonsense Mediated mRNA Decay , Transcription Factors/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...