Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Sci Rep ; 13(1): 22417, 2023 12 16.
Article in English | MEDLINE | ID: mdl-38104172

ABSTRACT

Floating treatment wetlands (FTWs) are a sustainable solution to treat polluted water, but their role in chromium (Cr(III)) removal under neutral pH conditions remains poorly understood. This study evaluated the potential of FTWs planted with two perennial emergent macrophytes, Phragmites australis and Iris pseudacorus, to remove Cr(III) and nutrients (N and PO4-P) from water containing 7.5 mg/L TN, 1.8 mg/L PO4-P, and Cr(III) (500, 1000, and 2000 µg/L). Within 1 h of exposure, up to 96-99% of Cr was removed from the solution, indicating rapid precipitation. After 50 days, Phragmites bound 9-19% of added Cr, while Iris bound 5-22%. Both species accumulated Cr primarily in the roots (BCF > 1). Biomass production and growth development were inhibited in Cr treatments, but microscopic examination of plant roots revealed no histological changes at 500 and 1000 µg/L Cr, suggesting high resistance of the tested species. At 2000 µg/L Cr, both species exhibited disruptions in the arrangement of vessel elements in the stele and increased aerenchyma spaces in Phragmites. At the end of the experiment, 70-86% of TN and 54-90% of PO4-P were removed.


Subject(s)
Chromium , Water Pollutants, Chemical , Chromium/metabolism , Wetlands , Biodegradation, Environmental , Plants/metabolism , Poaceae/metabolism , Water/metabolism , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 904: 166678, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37657549

ABSTRACT

Arsenic (As) contamination in water is a significant environmental concern with profound implications for human health. Accurate prediction of the adsorption capacity of arsenite [As(III)] and arsenate [As(V)] on biochar is vital for the reclamation and recycling of polluted water resources. However, comprehending the intricate mechanisms that govern arsenic accumulation on biochar remains a formidable challenge. Data from the literature on As adsorption to biochar was compiled and fed into machine learning (ML) based modelling algorithms, including AdaBoost, LGBoost, and XGBoost, in order to build models to predict the adsorption efficiency of As(III) and As(V) to biochar, based on the compositional and structural properties. The XGBoost model showed superior accuracy and performance for prediction of As adsorption efficiency (for As(III): coefficient of determination (R2) = 0.93 and root mean square error (RMSE) = 1.29; for As(V), R2 = 0.99, RMSE = 0.62). The initial concentrations of As(III) and As(V) as well as the dosage of the adsorbent were the most significant factors influencing adsorption, explaining 48 % and 66 % of the variability for As(III) and As(V), respectively. The structural properties and composition of the biochar explained 12 % and 40 %, respectively, of the variability of As(III) adsorption, and 13 % and 21 % of that of As(V). The XGBoost models were validated using experimental data. R2 values were 0.9 and 0.84, and RMSE values 6.5 and 8.90 for As(III) and As(V), respectively. The ML approach can be a valuable tool for improving the treatment of inorganic As in aqueous environments as it can help estimate the optimal adsorption conditions of As in biochar-amended water, and serve as an early warning for As-contaminated water.


Subject(s)
Arsenic , Arsenites , Water Pollutants, Chemical , Water Purification , Humans , Arsenates , Arsenic/analysis , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Adsorption , Machine Learning , Water , Kinetics
3.
Environ Sci Technol ; 57(9): 3733-3745, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36821792

ABSTRACT

Platinum nanoparticles (PtNPs) are increasing in the environment largely due to their wide use and application in automobile and medical industries. The mechanism of uptake behavior of different-sized PtNPs and their association with PtNPs-induced phytotoxicity to plants remains unclear. The present study investigated PtNP uptake mechanisms and phytotoxicity simultaneously to further understand the accumulation and transformation dynamics. The uptake mechanisms were investigated by comparing the uptake and toxicological effects of three different-sized PtNPs (25, 50, and 70 nm) on rice seedlings across an experimental concentration gradient (0.25, 0.5, and 1 mg/L) during germination. The quantitative and qualitative results indicated that 70 nm-sized PtNPs were more efficiently transferred in rice roots. The increase in the PtNP concentration restricted the particle uptake. Particle aggregation was common in plant cells and tended to dissolve on root surfaces. Notably, the dissolution of small particles was simultaneous with the growth of larger particles after PtNPs entered the rice tissues. Ionomic results revealed that PtNP accumulation induced element homeostasis in the shoot ionome. We observed a significant positive correlation between the PtNP concentration and Fe and B accumulation in rice shoots. Compared to particle size, the exposure concentration of PtNPs had a stronger effect on the shoot ionomic response. Our study provides better understanding of the correlation of ionomic change and NP quantitative accumulation induced by PtNPs in rice seedlings.


Subject(s)
Metal Nanoparticles , Oryza , Seedlings , Platinum/pharmacology , Metal Nanoparticles/toxicity , Plant Roots
4.
Environ Res ; 220: 115098, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36586716

ABSTRACT

Cadmium (Cd), a major contaminant of concern, has been extensively reviewed and debated for its anthropogenic global shifts. Cadmium levels in rice grains raise wide food safety concerns. The aim of this review is therefore to capture the dynamics of Cd in paddy soil, translocation pathways of Cd from soil to consumption rice, and assess its bio-accessibility in human consumption. In crop plants, Cd reduces absorption of nutrients and water, triggers oxidative stress, and inhibits plant metabolism. Understanding the mechanisms and behaviour of Cd in paddy soil and rice allows to explain, predict and intervene in Cd transferability from soil to grains and human exposure. Factors affecting Cd movement in soil, and further to rice grain, are elucidated. Recently, physiological and molecular understanding of Cd transport in rice plants have been advanced. Morphological-biochemical characteristics and Cd transporters of plants in such a movement were also highlighted. Ecologically viable remediation approaches, including low input cost agronomic methods, phytoremediation and microbial bioremediation methods, are emerging.


Subject(s)
Oryza , Soil Pollutants , Humans , Cadmium/toxicity , Cadmium/analysis , Oryza/chemistry , Soil/chemistry , Agriculture , Biodegradation, Environmental , Soil Pollutants/analysis
5.
Chemosphere ; 310: 136760, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36243080

ABSTRACT

The quality of bottom sediments is a key factor for many functions of dam reservoirs, which include water supply, flood control and recreation. The aim of the study was to combine different pollution indices in a critical generic risk assessment of metal contamination of bottom sediments. Both geochemical and ecological indices reflected that sediment contamination was dominated by Zn, Pb and Cd. The ecological risk indices suggested a high riks for all three metals, whereas human health risks were high for Pb and Cd. An occasional local contamination of sediments with Cr and Ni was revealed, although at levels not expected to cause concerns about potential ecological or health risk. Sediments from the Rybnik reservoir for Cu only revealed a high potential ecological risk. EF turned to be as being the most useful, whereas TRI (∑TRI) was the most important ecological index. All multi-element indices suggested similar trends, indicating that Zn, Pb and Cd taken altogether had the greatest impact on the level of sediment contamination and posed the greatest potential ecological and health risks to organisms. The use of sequential BCR extraction and ecotoxicity analyses allowed for a multi-facetted generic risk assessment of metals in sediments of dam reservoirs.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Geologic Sediments/chemistry , Metals, Heavy/analysis , Rivers/chemistry , Environmental Monitoring , Water Pollutants, Chemical/analysis , Cadmium/analysis , Lead/analysis , Risk Assessment , China
6.
Sci Total Environ ; 862: 160737, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36502983

ABSTRACT

Mangrove forests, provide vital food resources and are an endangered ecosystem worldwide due to pollution and habitat destruction. A risk-benefit assessment (RBA) was performed on the red mangrove crab (Ucides occidentalis) from the threatened Guayas mangroves in Ecuador. It was aimed to assess the combined potential adverse and beneficial health impact associated with crab consumption and define a recommended safe intake (SI) to improve the diet of the Ecuadoran population while ensuring safe food intake. Target hazard quotients (THQs), benefit quotients (Qs), and benefit-risk quotients (BRQs) were calculated based on the concentrations of the analyzed contaminants (121 pesticide residues, 11 metal(loid)s, antimicrobial drugs from 3 classes) and nutrients (fatty acids, amino acids, and essential nutrients). Except for inorganic arsenic (iAs), the THQ was below 100 for all investigated contaminants, suggesting that the average crab consumer is exposed to levels that do not impose negative non-carcinogenic or carcinogenic health effects in the long and/or short term. Concentrations of iAs (average AsIII: 25.64 and AsV: 6.28 µg/kg fw) were of the highest concern because of the potential to cause negative health effects on long-term consumption. Despite the thriving aquaculture in the Guayas estuary, concentrations of residues of the antimicrobial drugs oxytetracycline (OTC), florfenicol, and nitrofurans still were low. Based on the fact that different risk reference values exist, related to different safety levels, four SI values (0.002, 0.04, 4, and 18 crabs/day) were obtained. The strictest intake values indicate a concern for current consumption habits. In conclusion, the red mangrove crab contains various important nutrients and can be part of a balanced diet for the Ecuadorian population when consumed in limited portions. The present study emphasizes the importance of safeguarding the quality of the environment as a prerequisite for procuring nutritious and safe food.


Subject(s)
Brachyura , Rhizophoraceae , Animals , Ecosystem , Metals , Risk Assessment
7.
Food Chem ; 401: 134105, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36108382

ABSTRACT

Crabs are an outstanding source of many essential nutrients. Little research has been performed on the nutritional quality of the red mangrove crab (Ucides occidentalis). In this research we investigated the proximate composition, fatty acid profile, amino acid composition, and mineral concentrations of red mangrove crabs sampled at two reserves within the Guayas estuary in Ecuador. Furthermore, we evaluated the influence of spatial variation. We found that the red mangrove is a good source of nutrition for a balanced diet and can contribute to the recommended intake of essential nutrients. Also, the red mangrove crab obtained better lipid nutritional quality indices compared to other shellfish species, apart from the EPA + DHA index values. Current research indicated that the final nutritional quality indices of the red crab were not influenced by harvest site. More research into the influence of environmental and ecological factors on the nutritional composition of crabs is suggested.


Subject(s)
Brachyura , Rhizophoraceae , Animals , Brachyura/metabolism , Estuaries , Nutritive Value , Fatty Acids/metabolism , Amino Acids/metabolism , Lipids
8.
Environ Geochem Health ; 45(5): 1555-1572, 2023 May.
Article in English | MEDLINE | ID: mdl-35532837

ABSTRACT

Metal contamination from upstream river water is a threat to coastal and estuarine ecosystem. The present study was undertaken to unveil sedimentation processes and patterns of heavy metal deposition along the salinity gradient of a tropical estuary and its mangrove ecosystem. Sediment columns from three representative sites of differential salinity, anthropogenic interference, and sediment deposition pattern were sampled and analyzed for grain size distribution and metal concentrations as a function of depth. Sediments were dominantly of silty-medium sand texture. A suite of fluvial and alluvial processes, and marine depositional forcing control the sediment deposition and associated heavy metal loading in this estuary. The depth profile revealed a gradual increase in heavy metal accumulation in recent top layer sediments and smaller fractions (silt + clay), irrespective of tidal regimes. Alluvial processes and long tidal retention favor accumulation of heavy metals. Enrichment factor (0.52-15), geo-accumulation index (1.4-5.8), and average pollution load index (PLI = 2.0) indicated moderate to higher heavy metal contamination status of this estuary. This study showed that alluvial processes acted as dominant drivers for the accumulation of metals in sediments, which prevailed over the influence of marine processes. Longer tidal retention of the water column favored more accumulation of heavy metals. Metal accumulation in the sediments entails a potential risk of bioaccumulation and biomagnification through the food web, and may increasingly impact estuarine ecology, economy, and ultimately human health.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Ecosystem , Geologic Sediments , Rivers , Environmental Monitoring , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Estuaries , Water , Risk Assessment
9.
Sci Total Environ ; 852: 158352, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36063950

ABSTRACT

A comprehensive evaluation of the effects of cerium on plants is lacking even though cerium is extensively applied to the environment. Here, the effects of cerium on plants were meta-analyzed using a newly developed database consisting of approximately 8500 entries of published data. Cerium affects plants by acting as oxidative stressor causing hormesis, with positive effects at low concentrations and adverse effects at high doses. Production of reactive oxygen species and its linked induction of antioxidant enzymes (e.g. catalase and superoxide dismutase) and non-enzymatic antioxidants (e.g. glutathione) are major mechanisms driving plant response mechanisms. Cerium also affects redox signaling, as indicated by altered GSH/GSSG redox pair, and electrolyte leakage, Ca2+, K+, and K+/Na+, indicating an important role of K+ and Na+ homeostasis in cerium-induced stress and altered mineral (ion) balance. The responses of the plants to cerium are further extended to photosynthesis rate (A), stomatal conductance (gs), photosynthetic efficiency of PSII, electron transport rate, and quantum yield of PSII. However, photosynthesis response is regulated not only by physiological controls (e.g. gs), but also by biochemical controls, such as via changed Hill reaction and RuBisCO carboxylation. Cerium concentrations <0.1-25 mg L-1 commonly enhance chlorophyll a and b, gs, A, and plant biomass, whereas concentrations >50 mg L-1 suppress such fitness-critical traits at trait-specific concentrations. There was no evidence that cerium enhances yields. Observations were lacking for yield response to low concentrations of cerium, whereas concentrations >50 mg Kg-1 suppress yields, in line with the response of chlorophyll a and b. Cerium affects the uptake and tissue concentrations of several micro- and macro-nutrients, including heavy metals. This study enlightens the understanding of some mechanisms underlying plant responses to cerium and provides critical information that can pave the way to reducing the cerium load in the environment and its associated ecological and human health risks.


Subject(s)
Cerium , Metals, Heavy , Antioxidants/metabolism , Catalase , Cerium/toxicity , Chlorophyll , Chlorophyll A , Glutathione Disulfide/pharmacology , Oxidative Stress , Photosynthesis , Plants/metabolism , Reactive Oxygen Species , Ribulose-Bisphosphate Carboxylase , Superoxide Dismutase/metabolism
10.
Sci Total Environ ; 841: 156582, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35714741

ABSTRACT

Chemical analytical methods for metal analysis in soils are laborious, time-consuming and costly. This paper aims to evaluate the potential of short-range (SR) and full-range (FR) visible and infrared spectroscopy (vis-NIR) combined with linear and nonlinear calibration methods to estimate concentrations of nickel (Ni), cobalt (Co), cadmium (Cd), lead (Pb) and copper (Cu) in soils. A total of 435 soil samples were collected over agricultural sites, forest (7 %), pasture (5 %) and fallow land across a region in the northern part of Belgium. Generally, better predictions were obtained when using partial least squares regression (PLSR) and nonlinear calibration method [i.e., random forest (RF)] for processing of the spectral data, than when using support vector machine (SVM). FR generally outperformed SR and provided the best prediction results for Ni (R2p = 0.76), Co (R2p = 0.77), Cd (R2p = 0.64) and Pb (R2p = 0.65), when using PLSR and RF. SVM produced the best prediction result only for Pb (R2p = 0.57) using the SR spectra. The metals Ni, Co, Cd and Pb can be predicted successfully (good accuracy) from the FR vis-NIR spectra using PLSR for Co, and RF for Ni, Cd, Pb and Cu. Compared to the FR spectrophotometer, improvement in accuracy was obtained for Cd and Co, using the SR spectra when combined with PLSR and RF, respectively. It is concluded that the SR spectrometer can be used successfully for the prediction of Co with RF (R2p = 0.70), while it best predicted Cd with PLSR with an R2p value of 0.67, which is of value for regional survey.


Subject(s)
Soil Pollutants , Soil , Cadmium/analysis , Lead/analysis , Nickel/analysis , Soil/chemistry , Soil Pollutants/analysis , Spectroscopy, Near-Infrared , Support Vector Machine
11.
J Hazard Mater ; 422: 126876, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34416699

ABSTRACT

Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.


Subject(s)
Selenium , Soil Pollutants , Animals , Biodegradation, Environmental , Ecosystem , Humans , Plants , Selenium/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
12.
Environ Pollut ; 294: 118627, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34871647

ABSTRACT

Copper (Cu), as an essential element, is added to animal feed to stimulate growth and prevent disease. The forage crop alfalfa (Medicago sativa L.) produced during Cu phytoextraction may be considered a biofortified crop to substitute the Cu feed additives for livestock production, beneficially alleviating Cu contamination in soils and reducing its input into agriculture systems. To assess this, alfalfa was grown in three similar soils with different Cu levels, i.e., 11, 439 and 779 mg kg-1 for uncontaminated soil (A), moderately Cu-contaminated soil (B) and highly Cu-contaminated soil (C), respectively. EDDS (Ethylenediamine-N,N'-disuccinic acid) was applied to the soils seven days before the first cutting at four rates (0, 0.5, 2 and 5 mmol kg-1) to enhance bioavailable Cu uptake. Alfalfa grew well in soils A and B but not in the highly Cu-contaminated soil. After applying EDDS, a significant biomass reduction of the first cutting shoot was only observed with 5 mmol kg-1 EDDS in the highly Cu-contaminated soil, with a 45% (P < 0.05) decrease when compared to the control. Alfalfa grown in the three soils gradually wilted after the first cutting with 5 mmol kg-1 EDDS, and Cu concentrations in the first cutting shoot were augmented strongly, by 250% (P < 0.05), 3500% (P < 0.05) and 6700% (P < 0.05) compared to the controls, respectively. Cu concentrations in alfalfa shoots were found to be higher in this study than in some fodder plants and further augmented in soils with higher Cu levels and with EDDS application. These findings suggest that alfalfa grown on clean soils or soils with up to 450 mg Cu kg-1 (with appropriate EDDS dosages) has the potential to be considered as a partial Cu supplementation for livestock. This research laid the foundation for the integration between Cu-phytoextraction and Cu-biofortification for livestock.


Subject(s)
Soil Pollutants , Trace Elements , Animals , Biodegradation, Environmental , Biomass , Ethylenediamines , Livestock , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Succinates
13.
Foods ; 10(8)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34441657

ABSTRACT

Mangrove wetlands provide essential ecosystem services such as coastal protection and fisheries. Metal pollution due to industrial and agricultural activities represents an issue of growing concern for the Guayas River Basin and related mangroves in Ecuador. Fisheries and the related human consumption of mangrove crabs are in need of scientific support. In order to protect human health and aid river management, we analyzed several elements in the Guayas Estuary. Zn, Cu, Ni, Cr, As, Pb, Cd, and Hg accumulation were assessed in different compartments of the commercial red mangrove crab Ucides occidentalis (hepatopancreas, carapax, and white meat) and the environment (sediment, leaves, and water), sampled at fifteen sites over five stations. Consistent spatial distribution of metals in the Guayas estuary was found. Nickel levels in the sediment warn for ecological caution. The presence of As in the crabs generated potential concerns on the consumers' health, and a maximum intake of eight crabs per month for adults is advised. The research outcomes are of global importance for at least nine Sustainable Development Goals (SDGs). The results presented can support raising awareness about the ongoing contamination of food and their related ecosystems and the corresponding consequences for environmental and human health worldwide.

14.
Environ Int ; 156: 106749, 2021 11.
Article in English | MEDLINE | ID: mdl-34247006

ABSTRACT

Cadmium (Cd) contamination in paddy fields is a serious health concern because of its high toxicity and widespread pollution. Recently, much progress has been made in elucidating the mechanisms involved in Cd uptake, transport, and transformation from paddy soils to rice grains, aiming to mitigate the associated health risk; however, these topics have not been critically reviewed to date. Here, we summarized and reviewed the (1) geochemical distribution and speciation of Cd in soil-rice systems, (2) mobilization, uptake, and transport of Cd from soil to rice grains and the associated health risks, (3) pathways and transformation mechanisms of Cd from soil to rice grains, (4) transporters involved in reducing Cd uptake, transport, and accumulation in rice plants, (5) factors governing Cd bioavailability in paddy, and (6) comparison of remediation approaches for mitigating the environmental and health risks of Cd contamination in paddy fields. Briefly, this review presents the state of the art about the fate of Cd in paddy fields and its transport from soil to grains, contributing to a better understanding of the environmental hazards of Cd in rice ecosystems. Challenges and perspectives for controlling Cd risks in rice are thus raised. The summarized findings in this review may help to develop innovative and applicable methods for controlling Cd accumulation in rice grains and sustainably manage Cd-contaminated paddy fields.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Cadmium/toxicity , Ecosystem , Food Safety , Soil , Soil Pollutants/analysis
15.
J Hazard Mater ; 418: 126266, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34130163

ABSTRACT

Contamination of water bodies by potentially toxic elements and organic pollutants has aroused extensive concerns worldwide. Thus it is significant to develop effective adsorbents for removing these contaminants. As a new member of carbonaceous material families (activated carbon, biochar, and graphene), ordered mesoporous carbon (OMC) with larger specific surface area, ordered pore structure, and higher pore volume are being evaluated for their use in contaminant removal. In this paper, modification techniques of OMC were systematically reviewed for the first time. These include nonmetallic doping modification (nitrogen, sulfur, and boron) and the impregnation of nano-metals and metal oxides (iron, copper, cobalt, nickel, magnesium, and rare earth element). Reaction conditions (solution pH, reaction temperature, sorbent dosage, and contact time) are of critical importance for the removal performance of contaminants onto OMC. In addition, the pristine and modified OMC have been investigated for the removal of a range of contaminants, including cationic/anionic toxic elements and organic contaminants (synthetic dye, phenol, and others), and involving different and specific mechanisms of interaction with contaminants. The future research directions of the application of pristine and modified OMC were proposed. Overall, this review can provide sights into the modification techniques of OMC for removal of environmental contaminants.


Subject(s)
Water Pollutants, Chemical , Adsorption , Cobalt , Humans , Iron , Phenol , Water , Water Pollutants, Chemical/analysis
17.
Sci Total Environ ; 760: 143424, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33223175

ABSTRACT

Zn is an essential micronutrient for living organisms and, in that capacity, it is added to animal feed in intensive livestock production to promote growth and eliminate diseases. Alfalfa (Medicago sativa L.) may have the potential to compensate and substitute the need for chemical Zn additives in feeds as a Zn-biofortified feed crop when grown on Zn-enriched soils. Thus, this possibility was investigated with a greenhouse experiment using three soils with Zn concentrations (mg kg-1) of 189 (soil A), 265 (soil B) and 1496 (soil C). Ethylenediamine-N,N'-disuccinate acid (EDDS) and Nitrilotriacetic acid (NTA) at different rates (0 as control, 0.5, 2 and 5 mmol kg-1) were applied as soil additives to enhance the phytoextraction efficiency of alfalfa. The results showed that Zn was highly transferable in alfalfa tissues in the three soils even without additives. EDDS was more effective than NTA in enhancing Zn phytoextraction by alfalfa. The maximum Zn accumulation in the third cutting shoots was obtained with the EDDS concentration of 5 mmol kg-1 in soil A and of 2 mmol kg-1 in soil B, with a 462% and 162% increase compared with controls, respectively. However, the higher EDDS concentration resulted in a significant reduction in biomass production. In soil C, all EDDS concentrations resulted in similar Zn accumulations in the third shoot. To improve the phytoextraction efficacy of Zn while minimizing its phytotoxicity on alfalfa, the rate of 2 mmol kg-1 EDDS proved to be optimal for soil B, and 0.5 mmol kg-1 EDDS for soils A and C. Findings suggest that phytoextraction of Zn-enriched soil can be combined with Zn biofortification, thus allowing to recycle Zn into biomass that can, to an extent, substitute Zn feed additives. This study provided a primary data set for the combination of Zn-biofortification and Zn-phytoextraction.


Subject(s)
Medicago sativa , Soil Pollutants , Animals , Biodegradation, Environmental , Biofortification , Biomass , Chelating Agents , Ethylenediamines , Soil , Soil Pollutants/analysis , Succinates , Zinc
18.
Environ Sci Process Impacts ; 22(9): 1790-1808, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32789328

ABSTRACT

Biochar is an effective amendment for trace metal/metalloid (TMs) immobilization in soils. The capacity of biochar to immobilize TMs in soil can be positively or negatively altered due to the changes in the surface and structural chemistry of biochar after soil application. Biochar surfaces are oxidized in soils and induce structural changes through physical and biochemical weathering processes. These changes in the biochar surface and structural chemistry generally increase its ability to immobilize TMs, although the generation of dissolved black carbon during weathering may increase TM mobility. Moreover, biochar modification can improve its capacity to immobilize TMs in soils. Over the short-term, engineered/modified biochar exhibited increased TM immobilization capacity compared with unmodified biochar. In the long-term, no large distinctions in such capacities were seen between modified and unmodified biochars due to weathering. In addition, artificial weathering at laboratories also revealed increased TM immobilization in soils. Continued collection of mechanistic evidence will help evaluate the effect of natural and artificial weathering, and biochar modification on the long-term TM immobilization capacity of biochar with respect to feedstock and synthesis conditions in contaminated soils.


Subject(s)
Charcoal , Metalloids/chemistry , Metals/chemistry , Soil Pollutants/chemistry , Soil , Soil Pollutants/analysis
19.
Sci Total Environ ; 743: 140718, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758833

ABSTRACT

The interpretive utility of environmental magnetic proxies for investigating airborne particulate matter (PM) pollution impact is restricted by differences in soil composition, land cover and land use. For soil magnetic applications, land use strongly influences magnetic particle distribution down the soil profile, even in homogeneous soil environments. Here, an adaptive approach is engineered to provide accurate magnetic proxy information for pollution monitoring across different land use types. In an 81-km2 area between two industrial harbours, the irregular distribution of forests, arable lands, pasture and residential areas prevented robustly relating topsoil magnetic susceptibility data to known pollution impacts. Although normalized topsoil susceptibility values showed improved potential for deriving airborne pollution impacts, optimal results were obtained by depth-integrating magnetic susceptibility logs, revealing long-term impacts of both active and decommissioned industrial facilities. Complementing soil magnetic observations, active and passive (bio)magnetic monitoring allowed discriminating short-term pollution patterns and evaluating changes in PM impact across the study area. Hereby, active PM receptors (strawberry leaves and plastic coated cardboards (PCCs)) provided promising results, yet passive receptors allowed estimating pollution impacts more efficiently. For the latter, species-independent grass leaf sampling reflected airborne PM depositional patterns most accurately, whereas wiped anthropogenic surfaces proved too sensitive to wash-off.

SELECTION OF CITATIONS
SEARCH DETAIL
...