Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 23(1): 340, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752485

ABSTRACT

BACKGROUND: The development of new strategies to inhibit and/or treat osteoporosis as a chronic systemic disease is one of the most crucial topics. The present study aimed to investigate the simultaneous effects of calcium fluoride nanoparticles (CaF2 NPs) and lactobacillus reuteri ATCC PTA 6475 (L. reuteri) against osteoporosis in an ovariectomized rat model (OVX). METHODS: In this study, 18 matured Wistar female rats were randomly assigned into 6 groups, including control, OVX, sham, OVX + L. reuteri, OVX + CaF2 NPs, and OVX + L. reuteri + CaF2 NPs. We used OVX rats to simulate post-menopausal osteoporosis, and the treatments were begun two weeks before OVX and continued for four weeks. All groups' blood samples were collected, and serum biomarkers (estrogen, calcium, vitamin D3, and alkaline phosphatase (ALP)) were measured. The tibia and Femur lengths of all groups were measured. Histopathological slides of tibia, kidney, and liver tissues were analyzed using the Hematoxylin and Eosin staining method. RESULTS: Our results revealed that dietary supplementation of L. reuteri and CaF2 NPs in low doses for 6 weeks did not show adverse effects in kidney and liver tissues. The tibial and femoral lengths of OVX rats as well as the population of osteoblasts and osteocytes and newly generated osteoid in the tibia remarkably increased in the combination therapy group. Moreover, there was a significant increase in serum estrogen levels and a significant decrease in serum calcium and alkaline phosphatase levels in combination treatment groups compared to the OVX groups not receiving the diet. CONCLUSIONS: Our results suggest the favorable effects of the simultaneous supplementation of L. reuteri and CaF2 NP to reduce post-menopausal bone loss.


Subject(s)
Limosilactobacillus reuteri , Osteoporosis, Postmenopausal , Osteoporosis , Female , Animals , Rats , Humans , Rats, Wistar , Calcium Fluoride , Alkaline Phosphatase , Calcium , Osteoporosis/drug therapy , Estrogens , Dietary Supplements
2.
Pathol Res Pract ; 248: 154708, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37536019

ABSTRACT

The glycolysis is a common characteristic of cancer and it is responsible for providing enough energy to ensure growth. The glycolysis suppression is beneficial in tumor growth reduction. The stimulation/inhibition of glycolysis in cancer is tightly regulated by ncRNAs. The regulation of glycolysis by ncRNAs can influence proliferation and therapy response of tumor. The miRNAs are capable of inactivating enzymes responsible for glycolysis and suppressing signaling networks resulting in glycolysis induction. By regulation of glycolysis, miRNAs can affect therapy response. The lncRNAs and circRNAs follow a same pathway and by targeting glycolysis, they affect progression and therapy response of tumor. Noteworthy, lncRNAs and circRNAs sponge miRNAs in glycolysis mechanism control in tumor cells. Furthermore, ncRNA-mediated regulation of glycolysis mechanism can influence metastasis to organs of body. The ncRNAs regulating glycolysis are reliable biomarkers in cancer patients and more importantly, exosomal ncRNAs due to their presence in body fluids, are minimally-invasive biomarkers.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Biomarkers/metabolism , Glycolysis
3.
Pathol Res Pract ; 248: 154676, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37454494

ABSTRACT

Low oxygen level at tumor microenvironment leads to a condition, known as hypoxia that is implicated in cancer progression. Upon hypoxia, HIF-1α undergoes activation and due to its oncogenic function and interaction with other molecular pathways, promotes tumor progression. The HIF-1α role in regulating breast cancer progression is described, Overall, HIF-1α has upregulation in breast tumor and due to its tumor-promoting function, its upregulation is in favor of breast tumor progression. HIF-1α overexpression prevents apoptosis in breast tumor and it promotes cell cycle progression. Silencing HIF-1α triggers cycle arrest and decreases growth. Migration of breast tumor enhances by HIF-1α signaling and it mainly induces EMT in providing metastasis. HIF-1α upregulation stimulates drug resistance and radio-resistance in breast tumor. Furthermore, HIF-1α signaling induces immune evasion of breast cancer. Berberine and pharmacological intervention suppress HIF-1α signaling in breast tumor and regulation of HIF-1α by non-coding RNAs occurs. Furthermore, HIF-1α is a biomarker in clinic.

5.
Biol Proced Online ; 25(1): 9, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964481

ABSTRACT

BACKGROUND: Tissue engineering for cartilage regeneration has made great advances in recent years, although there are still challenges to overcome. This study aimed to evaluate the chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) on three-dimensional scaffolds based on polyglycerol sebacate (PGS) / polycaprolactone (PCL) / gelatin(Gel) in the presence of Nanohydroxyapatite (nHA). MATERIALS AND METHODS: In this study, a series of nHA-nanocomposite scaffolds were fabricated using 100:0:0, 60:40:0, and 60:20:20 weight ratios of PGS to PCL: Gel copolymers through salt leaching method. The morphology and porosity of prepared samples was characterized by SEM and EDX mapping analysis. Also, the dynamic contact angle and PBS adsorption tests are used to identify the effect of copolymerization and nanoparticles on scaffolds' hydrophilicity. The hydrolytic degradation properties were also analyzed. Furthermore, cell viability and proliferation as well as cell adhesion are evaluated to find out the biocompatibility. To determine the potential ability of nHA-nanocomposite scaffolds in chondrogenic differentiation, RT-PCR assay was performed to monitor the expression of collagen II, aggrecan, and Sox9 genes as markers of cartilage differentiation. RESULTS: The nanocomposites had an elastic modulus within a range of 0.71-1.30 MPa and 0.65-0.43 MPa, in dry and wet states, respectively. The PGS/PCL sample showed a water contact angle of 72.44 ± 2.2°, while the hydrophilicity significantly improved by adding HA nanoparticles. It was found from the hydrolytic degradation study that HA incorporation can accelerate the degradation rate compared with PGS and PGS/PCL samples. Furthermore, the in vitro biocompatibility tests showed significant cell attachment, proliferation, and viability of adipose-derived mesenchymal stem cells (ADMSCs). RT-PCR also indicated a significant increase in collagen II, aggrecan and Sox9 mRNA levels. CONCLUSIONS: Our findings demonstrated that these nanocomposite scaffolds promote the differentiation of hADSCs into chondrocytes possibly by the increase in mRNA levels of collagen II, aggrecan, and Sox9 as markers of chondrogenic differentiation. In conclusion, the addition of PCL, Gelatin, and HA into PGS is a practical approach to adjust the general features of PGS to prepare a promising scaffold for cartilage tissue engineering.

6.
Lasers Med Sci ; 37(9): 3693-3703, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36385209

ABSTRACT

Photo biomodulation (PBM) as a non-invasive and safe treatment has been demonstrated the anti-inflammatory potential in a variety of cell types, including stem cells. However, further investigations using different laser parameters combined with more accurate methods such as quantitative measurement of inflammatory gene expression at the mRNA level are still necessary. The aim of this study was to evaluate the effect of 532 nm green laser on cell proliferation as well as expression of inflammatory genes in human adipose-derived mesenchymal stem cells (hADMSCs) using RNA sequencing (RNA-seq) technique and confirmatory RT-PCR. hADMSCs were cultured in DMEM low glocuse medium with 10% fetal bovine serum until the fourth passage. Cultured cells were divided in two groups: control group (no laser irradiation) and laser group, irradiated with 532 nm laser at 44 m J/cm2 with an output power of 50 mW and a density of 6 mW/cm2, every other day, 7 s each time. The cell viability was assessed using MTT assay 24 h after each irradiation on days 3, 5, and 7 after cell seeding, followed by performing RNA-seq and RT-PCR. The MTT assay showed that PBM increased cell proliferation on day 5 after irradiation compared to day 3 and decreased on day 7 compared to day 5. In addition, gene expression analysis in hADMSCs using RNA-seq revealed down-regulation of inflammatory genes including CSF2, CXCL2, 3, 5, 6, 8, and CCL2, 7. These results indicate that 532 nm PBM with the parameters used in this study has a time-dependent effect on hADMSCs proliferation as well as anti-inflammatory potential.


Subject(s)
Mesenchymal Stem Cells , Humans , Stem Cells , Cell Proliferation/genetics , Cell Survival , Cell Line
7.
Rep Biochem Mol Biol ; 10(4): 640-652, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35291609

ABSTRACT

Background: For many years, the chemotherapeutic agent doxorubicin (DOX) has been used to treat various cancers; however, DOX initiates several critical adverse effects. Many studies have reported that non-thermal atmospheric pressure plasma can provide novel, but challenging, treatment strategies for cancer patients. To date, tissues and cells have been treated with plasma-activated medium (PAM) as a practical therapy. Consequently, due to the harmful adverse effects of DOX, we were motivated to elucidate the impact of PAM in the presence of DOX on MCF-7 cell proliferation. Methods: MTT assay, N-acetyl-L-cysteine (NAC) assay, and flow cytometry analysis were utilized in this research. Results: The results demonstrated that 0.45 µM DOX combined with 3-min PAM significantly induced apoptosis (p< 0.01) through intracellular ROS generation in MCF-7 when compared with 0.45 µM DOX alone or 3-min PAM alone. In contrast, after treatment with 0.45 µM DOX plus 4-min PAM, cell necrosis was increased. Hence, DOX combined with 4-min PAM has cytotoxic effects with different mechanisms than 4-min PAM alone, in which the number of apoptotic cells increases. Conclusion: Although further investigations are crucial, low doses of DOX plus 3-min PAM could be a promising strategy for cancer therapy. The findings from this research may offer advantageous and innovative clinical strategies for cancer therapy using PAM.

8.
Orig Life Evol Biosph ; 50(3-4): 157-173, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32617792

ABSTRACT

Extraterrestrial environments influence the biochemistry of organisms through a variety of factors, including high levels of radiation and vacuum, temperature extremes and a lack of water and nutrients. A wide variety of terrestrial microorganisms, including those counted amongst the most ancient inhabitants of Earth, can cope with high levels of salinity, extreme temperatures, desiccation and high levels of radiation. Key among these are the haloarchaea, considered particularly relevant for astrobiological studies due to their ability to thrive in hypersaline environments. In this study, a novel haloarchaea isolated from Urmia Salt Lake, Iran, Halovarius luteus strain DA50T, was exposed to varying levels of simulated extraterrestrial conditions and compared to that of the bacteria Bacillus atrophaeus. Bacillus atrophaeus was selected for comparison due to its well-described resistance to extreme conditions and its ability to produce strong spore structures. Thin films were produced to investigate viability without the protective influence of cell multi-layers. Late exponential phase cultures of Hvr. luteus and B. atrophaeus were placed in brine and phosphate buffered saline media, respectively. The solutions were allowed to evaporate and cells were encapsulated and exposed to radiation, desiccation and vacuum conditions, and their post-exposure viability was studied by the Most Probable Number method. The protein profile using High Performance Liquid Chromatography and Matrix Assisted Laser Desorption/Ionization bench top reflector time-of-flight are explored after vacuum and UV-radiation exposure. Results showed that the change in viability of the spore-forming bacteria B. atrophaeus was only minor whereas Hvr. luteus demonstrated a range of viability under different conditions. At the peak radiation flux of 105 J/m2 under nitrogen flow and after two weeks of desiccation, Hvr. luteus demonstrated the greatest decrease in viability. This study further expands our understanding of the boundary conditions of astrobiologically relevant organisms in the harsh space environment.


Subject(s)
Bacillus/physiology , Desiccation , Extraterrestrial Environment , Halobacteriaceae/physiology , Ultraviolet Rays/adverse effects , Vacuum , Bacillus/radiation effects , Halobacteriaceae/radiation effects , Mars
9.
Cancer Cell Int ; 15: 55, 2015.
Article in English | MEDLINE | ID: mdl-26074734

ABSTRACT

BACKGROUND: Recently, we have reported the induction of apoptosis by 2-amino-4-(3-nitrophenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-NC) in HepG2, T47D and HCT116 cells with low nano molar IC50 values. In this study, anti-proliferative effects of modified 4-aryle-4H-chromenes derivatives; 2-amino-4-(3-bromophenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-BC), 2-amino-4-(3-trifluoromethylphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-TFC) and 2-amino-4-(4,5-methylenedioxyphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (4, 5-MC) were investigated in three human cancer cell lines. Compared to 3-NC none of the compounds displayed better anti-proliferative effect, although 3-BC appeared somewhat similar. Therefore 3-NC was selected for further studies. METHODS AND RESULTS: Treatment of HepG2, T47D and HCT116 cells with this compound induced apoptosis as visualized by fluorescence microscopic study of Hoechst 33258 stained cells. Induction of apoptosis was quantified by Annexin V/PI staining using flow cytometry. Western blot analysis also revealed that 3-NC down-regulated the expression of anti-apoptotic protein Bcl2 and up-regulated pro-apoptotic protein Bax, in all of the cell lines. Nonetheless, HepG2 cell line was the most responsive to 3-NC as Bax and Bcl2 showed the most dramatic up and down regulation. CONCLUSION: Our previous finding that 3-NC down regulates Inhibitor of Apoptosis Proteins (IAPs) and the present observation that Bax is upregulated and Bcl2 is down regulated upon 3-NC treatment, this chromene derivative has the potential to overcome chemotherapy resistance caused by up regulation of these proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...