Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 9(8): 2099-2112, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38997518

ABSTRACT

Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Genome, Viral , SARS-CoV-2 , Vaccines, Attenuated , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/administration & dosage , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Animals , Genome, Viral/genetics , Humans , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Chlorocebus aethiops , Disease Models, Animal , Vero Cells , Antibodies, Neutralizing/immunology
2.
Front Immunol ; 15: 1387945, 2024.
Article in English | MEDLINE | ID: mdl-38887281

ABSTRACT

Introduction: The standard treatment for preventing rejection in vascularized composite allotransplantation (VCA) currently relies on systemic immunosuppression, which exposes the host to well-known side effects. Locally administered immunosuppression strategies have shown promising results to bypass this hurdle. Nevertheless, their progress has been slow, partially attributed to a limited understanding of the essential mechanisms underlying graft rejection. Recent discoveries highlight the crucial involvement of innate immune components, such as neutrophil extracellular traps (NETs), in organ transplantation. Here we aimed to prolong graft survival through a tacrolimus-based drug delivery system and to understand the role of NETs in VCA graft rejection. Methods: To prevent off-target toxicity and promote graft survival, we tested a locally administered tacrolimus-loaded on-demand drug delivery system (TGMS-TAC) in a multiple MHC-mismatched porcine VCA model. Off-target toxicity was assessed in tissue and blood. Graft rejection was evaluated macroscopically while the complement system, T cells, neutrophils and NETs were analyzed in graft tissues by immunofluorescence and/or western blot. Plasmatic levels of inflammatory cytokines were measured using a Luminex magnetic-bead porcine panel, and NETs were measured in plasma and tissue using DNA-MPO ELISA. Lastly, to evaluate the effect of tacrolimus on NET formation, NETs were induced in-vitro in porcine and human peripheral neutrophils following incubation with tacrolimus. Results: Repeated intra-graft administrations of TGMS-TAC minimized systemic toxicity and prolonged graft survival. Nevertheless, signs of rejection were observed at endpoint. Systemically, there were no increases in cytokine levels, complement anaphylatoxins, T-cell subpopulations, or neutrophils during rejection. Yet, tissue analysis showed local infiltration of T cells and neutrophils, together with neutrophil extracellular traps (NETs) in rejected grafts. Interestingly, intra-graft administration of tacrolimus contributed to a reduction in both T-cellular infiltration and NETs. In fact, in-vitro NETosis assessment showed a 62-84% reduction in NETs after stimulated neutrophils were treated with tacrolimus. Conclusion: Our data indicate that the proposed local delivery of immunosuppression avoids off-target toxicity while prolonging graft survival in a multiple MHC-mismatch VCA model. Furthermore, NETs are found to play a role in graft rejection and could therefore be a potential innovative therapeutic target.


Subject(s)
Drug Delivery Systems , Extracellular Traps , Graft Rejection , Graft Survival , Neutrophils , Tacrolimus , Vascularized Composite Allotransplantation , Extracellular Traps/immunology , Extracellular Traps/drug effects , Animals , Graft Survival/drug effects , Swine , Graft Rejection/immunology , Graft Rejection/prevention & control , Tacrolimus/administration & dosage , Neutrophils/immunology , Neutrophils/drug effects , Vascularized Composite Allotransplantation/methods , Immunosuppressive Agents/administration & dosage , T-Lymphocytes/immunology , Humans , Composite Tissue Allografts/immunology , Female
3.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38470488

ABSTRACT

Studies on severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) have highlighted the crucial role of host proteases for viral replication and the immune response. The serine proteases furin and TMPRSS2 and lysosomal cysteine proteases facilitate viral entry by limited proteolytic processing of the spike (S) protein. While neutrophils are recruited to the lungs during COVID-19 pneumonia, little is known about the role of the neutrophil serine proteases (NSPs) cathepsin G (CatG), elastase (NE), and proteinase 3 (PR3) on SARS-CoV-2 entry and replication. Furthermore, the current paradigm is that NSPs may contribute to the pathogenesis of severe COVID-19. Here, we show that these proteases cleaved the S protein at multiple sites and abrogated viral entry and replication in vitro. In mouse models, CatG significantly inhibited viral replication in the lung. Importantly, lung inflammation and pathology were increased in mice deficient in NE and/or CatG. These results reveal that NSPs contribute to innate defenses against SARS-CoV-2 infection via proteolytic inactivation of the S protein and that NE and CatG limit lung inflammation in vivo. We conclude that therapeutic interventions aiming to reduce the activity of NSPs may interfere with viral clearance and inflammation in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , SARS-CoV-2/metabolism , Neutrophils/metabolism , Spike Glycoprotein, Coronavirus , Inflammation , Serine Proteases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL