Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2312004, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402422

ABSTRACT

Quantum anomalous Hall (QAH) insulators transport charge without resistance along topologically protected chiral 1D edge states. Yet, in magnetic topological insulators to date, topological protection is far from robust, with zero-magnetic field QAH effect only realized at temperatures an order of magnitude below the Néel temperature TN , though small magnetic fields can stabilize QAH effect. Understanding why topological protection breaks down is therefore essential to realizing QAH effect at higher temperatures. Here a scanning tunneling microscope is used to directly map the size of exchange gap (Eg,ex ) and its spatial fluctuation in the QAH insulator 5-layer MnBi2 Te4 . Long-range fluctuations of Eg,ex are observed, with values ranging between 0 (gapless) and 70 meV, appearing to be uncorrelated to individual surface point defects. The breakdown of topological protection is directly imaged, showing that the gapless edge state, the hallmark signature of a QAH insulator, hybridizes with extended gapless regions in the bulk. Finally, it is unambiguously demonstrated that the gapless regions originate from magnetic disorder, by demonstrating that a small magnetic field restores Eg,ex in these regions, explaining the recovery of topological protection in magnetic fields. The results indicate that overcoming magnetic disorder is the key to exploiting the unique properties of QAH insulators.

2.
Nat Nanotechnol ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366224

ABSTRACT

The activity of electrocatalysts for the sulfur reduction reaction (SRR) can be represented using volcano plots, which describe specific thermodynamic trends. However, a kinetic trend that describes the SRR at high current rates is not yet available, limiting our understanding of kinetics variations and hindering the development of high-power Li||S batteries. Here, using Le Chatelier's principle as a guideline, we establish an SRR kinetic trend that correlates polysulfide concentrations with kinetic currents. Synchrotron X-ray adsorption spectroscopy measurements and molecular orbital computations reveal the role of orbital occupancy in transition metal-based catalysts in determining polysulfide concentrations and thus SRR kinetic predictions. Using the kinetic trend, we design a nanocomposite electrocatalyst that comprises a carbon material and CoZn clusters. When the electrocatalyst is used in a sulfur-based positive electrode (5 mg cm-2 of S loading), the corresponding Li||S coin cell (with an electrolyte:S mass ratio of 4.8) can be cycled for 1,000 cycles at 8 C (that is, 13.4 A gS-1, based on the mass of sulfur) and 25 °C. This cell demonstrates a discharge capacity retention of about 75% (final discharge capacity of 500 mAh gS-1) corresponding to an initial specific power of 26,120 W kgS-1 and specific energy of 1,306 Wh kgS-1.

3.
ACS Nano ; 17(16): 15441-15448, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37552585

ABSTRACT

Emergent quantum phenomena in two-dimensional van der Waal (vdW) magnets are largely governed by the interplay between exchange and Coulomb interactions. The ability to precisely tune the Coulomb interaction enables the control of spin-correlated flat-band states, band gap, and unconventional magnetism in such strongly correlated materials. Here, we demonstrate a gate-tunable renormalization of spin-correlated flat-band states and bandgap in magnetic chromium tribromide (CrBr3) monolayers grown on graphene. Our gate-dependent scanning tunneling spectroscopy (STS) studies reveal that the interflat-band spacing and bandgap of CrBr3 can be continuously tuned by 120 and 240 meV, respectively, via electrostatic injection of carriers into the hybrid CrBr3/graphene system. This can be attributed to the self-screening of CrBr3 arising from the gate-induced carriers injected into CrBr3, which dominates over the weakened remote screening of the graphene substrate due to the decreased carrier density in graphene. Precise tuning of the spin-correlated flat-band states and bandgap in 2D magnets via electrostatic modulation of Coulomb interactions not only provides effective strategies for optimizing the spin transport channels but also may exert a crucial influence on the exchange energy and spin-wave gap, which could raise the critical temperature for magnetic order.

4.
Small ; 19(18): e2207310, 2023 May.
Article in English | MEDLINE | ID: mdl-36751959

ABSTRACT

Hydrogen is emerging as an alternative clean fuel; however, its dependency on freshwater will be a threat to a sustainable environment. Seawater, an unlimited source, can be an alternative, but its salt-rich nature causes corrosion and introduces several competing reactions, hindering its use. To overcome these, a unique catalyst composed of porous sheets of nitrogen-doped NiMo3 P (N-NiMo3 P) having a sheet size of several microns is designed. The presence of large homogenous pores in the basal plane of these sheets makes them catalytically more active and ensures faster mass transfer. The introduction of N and Ni into MoP significantly tunes the electronic density of Mo, surface chemistry, and metal-non-metal bond lengths, optimizing surface energies, creating new active sites, and increasing electrical conductivity. The presence of metal-nitrogen bonds and surface polyanions increases the stability and improves anti-corrosive properties against chlorine chemistry. Ultimately, the N-NiMo3 P sheets show remarkable performance as it only requires overpotentials of 23 and 35 mV for hydrogen evolution reaction, and it catalyzes full water splitting at 1.52 and 1.55 V to achieve 10 mA cm-2 in 1 m KOH and seawater, respectively. Hence, structural and compositional control can make catalysts effective in realizing low-cost hydrogen directly from seawater.

5.
Nanoscale Adv ; 4(18): 3845-3854, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36133344

ABSTRACT

Surface-supported molecular overlayers have demonstrated versatility as platforms for fundamental research and a broad range of applications, from atomic-scale quantum phenomena to potential for electronic, optoelectronic and catalytic technologies. Here, we report a structural and electronic characterisation of self-assembled magnesium phthalocyanine (MgPc) mono and bilayers on the Ag(100) surface, via low-temperature scanning tunneling microscopy and spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), density functional theory (DFT) and tight-binding (TB) modeling. These crystalline close-packed molecular overlayers consist of a square lattice with a basis composed of a single, flat-adsorbed MgPc molecule. Remarkably, ARPES measurements at room temperature on the monolayer reveal a momentum-resolved, two-dimensional (2D) electronic energy band, 1.27 eV below the Fermi level, with a width of ∼20 meV. This 2D band results from in-plane hybridization of highest occupied molecular orbitals of adjacent, weakly interacting MgPc's, consistent with our TB model and with DFT-derived nearest-neighbor hopping energies. This work opens the door to quantitative characterisation - as well as control and harnessing - of subtle electronic interactions between molecules in functional organic nanofilms.

6.
ACS Appl Mater Interfaces ; 14(4): 6102-6108, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35050569

ABSTRACT

Understanding the air stability of MnBi2Te4 thin films is crucial for the development and long-term operation of electronic devices based on magnetic topological insulators. In the present work, we study MnBi2Te4 thin films upon exposure to the atmosphere using a combination of synchrotron-based photoelectron spectroscopy, room-temperature electrical transport, and atomic force microscopy to determine the oxidation process. After 2 days of air exposure, a 2 nm thick oxide passivates the surface, corresponding to the oxidation of only the top two surface layers, with the underlying layers preserved. This protective oxide layer results in samples that still exhibit metallic conduction even after several days of air exposure. Furthermore, the work function decreases from 4.4 eV for pristine MnBi2Te4 to 4.0 eV after the formation of the oxide, along with only a small shift in the core levels, indicating minimal doping as a result of air exposure. With the oxide confined to the top surface layers, and the underlying layers preserved, it may be possible to explore new avenues in how to handle, prepare, and passivate future MnBi2Te4 devices.

7.
J Am Chem Soc ; 143(48): 20309-20319, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34826219

ABSTRACT

Deoxyribonucleic acid (DNA) has been hypothesized to act as a molecular wire due to the presence of an extended π-stack between base pairs, but the factors that are detrimental in the mechanism of charge transport (CT) across tunnel junctions with DNA are still unclear. Here we systematically investigate CT across dense DNA monolayers in large-area biomolecular tunnel junctions to determine when intrachain or interchain CT dominates and under which conditions the mechanism of CT becomes thermally activated. In our junctions, double-stranded DNA (dsDNA) is 30-fold more conductive than single-stranded DNA (ssDNA). The main reason for this large change in conductivity is that dsDNA forms ordered monolayers where intrachain tunneling dominates, resulting in high CT rates. By varying the temperature T and the length of the DNA fragments in the junctions, which determines the tunneling distance, we reveal a complex interplay between T, the length of DNA, and structural order on the mechanism of charge transport. Both the increase in the tunneling distance and the decrease in structural order result in a change in the mechanism of CT from coherent tunneling to incoherent tunneling (hopping). Our results highlight the importance of the interplay between structural order, tunneling distance, and temperature on the CT mechanism across DNA in molecular junctions.


Subject(s)
DNA, Single-Stranded/chemistry , Electric Conductivity , Nucleic Acid Conformation , Temperature
8.
Nat Commun ; 12(1): 5714, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34588446

ABSTRACT

Sulfur is an important electrode material in metal-sulfur batteries. It is usually coupled with metal anodes and undergoes electrochemical reduction to form metal sulfides. Herein, we demonstrate, for the first time, the reversible sulfur oxidation process in AlCl3/carbamide ionic liquid, where sulfur is electrochemically oxidized by AlCl4- to form AlSCl7. The sulfur oxidation is: 1) highly reversible with an efficiency of ~94%; and 2) workable within a wide range of high potentials. As a result, the Al-S battery based on sulfur oxidation can be cycled steadily around ~1.8 V, which is the highest operation voltage in Al-S batteries. The study of sulfur oxidation process benefits the understanding of sulfur chemistry and provides a valuable inspiration for the design of other high-voltage metal-sulfur batteries, not limited to Al-S configurations.

9.
Nanoscale ; 13(33): 14110-14118, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34477692

ABSTRACT

Detonation nanodiamonds (DNDs) are becoming increasingly important in science and technology with applications from drug delivery to tribology. DNDs are known to self-assemble into fractal-like aggregates in water, but their colloidal properties remain poorly understood. Here, the effect of salt and particle concentration on the size and shape of these aggregates is investigated using dynamic light scattering and small-angle X-ray scattering. Our results suggest the existence of two particle aggregate populations with diameters on the scale of 50 nm and 300 nm, respectively. The concentration of NaCl, in the range 0.005-1 mM, does not have a significant effect on the size or shape of the particle aggregates. The hydrodynamic radius of both aggregate populations decreases as the DND concentration increases from 0.01 to 2 mg mL-1. At the same time, the particle aggregates become denser and their overall shape changes from disk-like to rod-like with increasing DND concentration. We identify unexpected similarities between the aggregate structures observed for DNDs and those commonly observed for concentrated colloidal particles in high salt environments, described by classical colloid aggregation theories. Our results contribute to the fundamental understanding of the colloidal properties of DNDs and pave the way for the engineering of novel nanoparticle-based systems that make use of DNDs' unique colloidal properties for future applications.

10.
ACS Nano ; 15(8): 13444-13452, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34387086

ABSTRACT

Intrinsic magnetic topological insulators offer low disorder and large magnetic band gaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the quantum anomalous Hall (QAH) effect and axion insulator phases have been realized. These observations occur at temperatures significantly lower than the Néel temperature of bulk MnBi2Te4, and measurement of the magnetic energy gap at the Dirac point in ultrathin MnBi2Te4 has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verification of a temperature-dependent topological phase transition from a large band gap QAH insulator to a gapless TI paramagnetic phase. Here we utilize temperature-dependent angle-resolved photoemission spectroscopy to study epitaxial ultrathin MnBi2Te4. We directly observe a layer-dependent crossover from a 2D ferromagnetic insulator with a band gap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>70 meV) at 8 K in 3 and 5 SL MnBi2Te4. The QAH gap is confirmed to be magnetic in origin, as it becomes gapless with increasing temperature above 8 K.

11.
ACS Appl Mater Interfaces ; 13(31): 37510-37516, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34328712

ABSTRACT

The large-scale formation of patterned, quasi-freestanding graphene structures supported on a dielectric has so far been limited by the need to transfer the graphene onto a suitable substrate and contamination from the associated processing steps. We report µm scale, few-layer graphene structures formed at moderate temperatures (600-700 °C) and supported directly on an interfacial dielectric formed by oxidizing Si layers at the graphene/substrate interface. We show that the thickness of this underlying dielectric support can be tailored further by an additional Si intercalation of the graphene prior to oxidation. This produces quasi-freestanding, patterned graphene on dielectric SiO2 with a tunable thickness on demand, thus facilitating a new pathway to integrated graphene microelectronics.

12.
Adv Sci (Weinh) ; 8(14): e2100055, 2021 07.
Article in English | MEDLINE | ID: mdl-34145786

ABSTRACT

This paper describes the transition from the normal to inverted Marcus region in solid-state tunnel junctions consisting of self-assembled monolayers of benzotetrathiafulvalene (BTTF), and how this transition determines the performance of a molecular diode. Temperature-dependent normalized differential conductance analyses indicate the participation of the HOMO (highest occupied molecular orbital) at large negative bias, which follows typical thermally activated hopping behavior associated with the normal Marcus regime. In contrast, hopping involving the HOMO dominates the mechanism of charge transport at positive bias, yet it is nearly activationless indicating the junction operates in the inverted Marcus region. Thus, within the same junction it is possible to switch between Marcus and inverted Marcus regimes by changing the bias polarity. Consequently, the current only decreases with decreasing temperature at negative bias when hopping is "frozen out," but not at positive bias resulting in a 30-fold increase in the molecular rectification efficiency. These results indicate that the charge transport in the inverted Marcus region is readily accessible in junctions with redox molecules in the weak coupling regime and control over different hopping regimes can be used to improve junction performance.

13.
Nano Lett ; 20(7): 5583-5589, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32568547

ABSTRACT

Materials with flat bands are considered as ideal platforms to explore strongly correlated physics such as the fractional quantum hall effect, high-temperature superconductivity, and more. In theory, a Kagome lattice with only nearest-neighbor hopping can give rise to a flat band. However, the successful fabrication of Kagome lattices is still very limited. Here, we provide a new design principle to construct the Kagome lattice by trapping atoms into Kagome arrays of potential valleys, which can be realized on a potassium-decorated phosphorus-gold surface alloy. Theoretical calculations show that the flat band is less correlated with the neighboring trivial electronic bands, which can be further isolated and dominate around the Fermi energy with increased Kagome lattice parameters of potassium atoms. Our results provide a new strategy for constructing Kagome lattices, which serve as an ideal platform to study topological and more general flat band phenomena.

14.
Chem Sci ; 12(7): 2381-2388, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-34164002

ABSTRACT

Herein, we report the first room temperature switchable Fe(iii) molecular spin crossover (SCO) tunnel junction. The junction is constructed from [FeIII(qsal-I)2]NTf2 (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate) molecules self-assembled on graphene surfaces with conductance switching of one order of magnitude associated with the high and low spin states of the SCO complex. Normalized conductance analysis of the current-voltage characteristics as a function of temperature reveals that charge transport across the SCO molecule is dominated by coherent tunnelling. Temperature-dependent X-ray absorption spectroscopy and density functional theory confirm the SCO complex retains its SCO functionality on the surface implying that van der Waals molecule-electrode interfaces provide a good trade-off between junction stability while retaining SCO switching capability. These results provide new insights and may aid in the design of other types of molecular devices based on SCO compounds.

15.
ACS Appl Mater Interfaces ; 11(46): 43789-43795, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31657202

ABSTRACT

Being a metallic transition-metal dichalcogenide, monolayer vanadium diselenide (VSe2) exhibits many novel properties, such as charge density waves and magnetism. Its interfaces with other materials can potentially be used in device applications as well as for manipulating its intrinsic properties. Here, we present a scanning tunneling microscopy and synchrotron-based X-ray photoemission spectroscopy study of the surface charge-transfer doping using efficient electron-withdrawing and electron-donating materials, that is, molybdenum trioxide (MoO3) and potassium (K), on the molecular beam epitaxy-grown monolayer VSe2 on highly oriented pyrolytic graphite (HOPG). We demonstrate that monolayer VSe2 is immune to MoO3- and K-doping effects. However, at the monolayer edges where the local chemical reactivity is higher because of Se deficiency, MoO3 is seen to react with VSe2 to form molybdenum dioxide (MoO2) and vanadium dioxide (VO2). Compared to the obvious charge-transfer doping effects of MoO3 and K on HOPG, the electronic structure of monolayer VSe2 is barely perturbed. This is attributed to the large density of states at the Fermi level of monolayer VSe2 carrying the metallic character. This work provides new insights into the chemical and electronic properties of monolayer VSe2, important for future VSe2-based electronic device design.

16.
Angew Chem Int Ed Engl ; 58(51): 18591-18597, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31608578

ABSTRACT

The ability to use mechanical strain to steer chemical reactions creates completely new opportunities for solution- and solid-phase synthesis of functional molecules and materials. However, this strategy is not readily applied in the bottom-up on-surface synthesis of well-defined nanostructures. We report an internal strain-induced skeletal rearrangement of one-dimensional (1D) metal-organic chains (MOCs) via a concurrent atom shift and bond cleavage on Cu(111) at room temperature. The process involves Cu-catalyzed debromination of organic monomers to generate 1,5-dimethylnaphthalene diradicals that coordinate to Cu adatoms, forming MOCs with both homochiral and heterochiral naphthalene backbone arrangements. Bond-resolved non-contact atomic force microscopy imaging combined with density functional theory calculations showed that the relief of substrate-induced internal strain drives the skeletal rearrangement of MOCs via 1,3-H shifts and shift of Cu adatoms that enable migration of the monomer backbone toward an energetically favorable registry with the Cu(111) substrate. Our findings on this strain-induced structural rearrangement in 1D systems will enrich the toolbox for on-surface synthesis of novel functional materials and quantum nanostructures.

17.
Nano Lett ; 19(8): 5340-5346, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31274321

ABSTRACT

Practical applications of two-dimensional (2D) black phosphorus (BP) are limited by its fast degradation under ambient conditions, for which many different mechanisms have been proposed; however, an atomic level understanding of the degradation process is still hindered by the absence of bottom-up methods for the growth of large-scale few-layer black phosphorus. Recent experimental success in the fabrication of single-layer blue phosphorus provides a model system to probe the oxidation mechanism of two-dimensional (2D) phosphorene down to single-layer thicknesses. Here, we report an atomic-scale investigation of the interaction between molecular oxygen and blue phosphorus. The atomic structure of blue phosphorus and the local binding sites of oxygen have been precisely identified using qPlus-based noncontact atomic force microscopy. A combination of low-temperature scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements reveal a thermally reversible oxidation process of blue phosphorus in a pure oxygen atmosphere. Our study clearly demonstrates the essential role of oxygen in the initial oxidation process, and it sheds further light on the fundamental pathways of the degradation mechanism.

18.
Adv Mater ; 31(30): e1901644, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31169936

ABSTRACT

Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low-cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft-X-ray-induced photocurrent is demonstrated in both rigid and flexible detectors based on all-inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft-X-ray beamline, high sensitivities of up to 1450 µC Gyair -1 cm-2 are achieved under an X-ray dose rate of 0.0172 mGyair s-1 with only 0.1 V bias voltage, which is about 70-fold more sensitive than conventional α-Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large-scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X-rays and for large-area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.

19.
Nanotechnology ; 30(2): 025704, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30382023

ABSTRACT

The inelastic mean free path (IMFP) for carbon-based materials is notoriously challenging to model, and moving from bulk materials to 2D materials may exacerbate this problem, making the accurate measurements of IMFP in 2D carbon materials critical. The overlayer-film method is a common experimental method to estimate IMFP by measuring electron effective attenuation length (EAL). This estimation relies on an assumption that elastic scattering effects are negligible. We report here an experimental measurement of electron EAL in epitaxial graphene on SiC using photoelectron spectroscopy over an electron kinetic energy range of 50-1150 eV. We find a significant effect of the interface between the 2D carbon material and the substrate, indicating that the attenuation length in the so-called 'buffer layer' is smaller than for free-standing graphene. Our results also suggest that the existing models for estimating IMFPs may not adequately capture the physics of electron interactions in 2D materials.

20.
Nature ; 564(7736): 390-394, 2018 12.
Article in English | MEDLINE | ID: mdl-30532002

ABSTRACT

The electric-field-induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor1-4. In this scheme, 'on' is the ballistic flow of charge and spin along dissipationless edges of a two-dimensional quantum spin Hall insulator5-9, and 'off' is produced by applying an electric field that converts the exotic insulator to a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits4, which would necessitate electric-field-switched materials with conventional and topological bandgaps much greater than the thermal energy at room temperature, substantially greater than proposed so far6-8. Topological Dirac semimetals are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases3,10-16. Here we use scanning tunnelling microscopy and spectroscopy and angle-resolved photoelectron spectroscopy to show that mono- and bilayer films of the topological Dirac semimetal3,17 Na3Bi are two-dimensional topological insulators with bulk bandgaps greater than 300 millielectronvolts owing to quantum confinement in the absence of electric field. On application of electric field by doping with potassium or by close approach of the scanning tunnelling microscope tip, the Stark effect completely closes the bandgap and re-opens it as a conventional gap of 90 millielectronvolts. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy at room temperature (25 millielectronvolts), suggest that ultrathin Na3Bi is suitable for room-temperature topological transistor operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...