Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202400632, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924204

ABSTRACT

The development of electron transport and n-type materials is still largely dominated by a limited number of organic semiconductors, with fullerenes at the forefront. In contrast, substantial progress has been made in developing hole transport and p-type materials. Therefore, expanding the range of electron acceptors, making them solution-processable, and elucidating their structural arrangement by X-ray crystallography is essential. We synthesised 2,2'-bi-(5,6,11,12-tetraazanaphthacene) (bi-TANC) and its triptycene end-capped derivative, 2,2'-bi(8,13-dihydro-8,13-[1,2]benzenonaphtho-5,6,15,16-tetraazanaphthacene) (bi-TpTANC), as electron acceptors. Bi-TANC exhibits a herringbone-like crystal packing with intermolecular π-π overlap, which is observed in typical organic n-type semiconductors. However, it showed poor solubility, similar to larger acenes. In contrast, bi-TpTANC exhibited favourable solubility, and its electrochemistry in solution was investigated. In the cyclic voltammogram of bi-TpTANC, reversible redox waves corresponding to 3-step/4-electron transfer were observed at -0.795 V (1e-), -0.927 V (1e-), and -1.44 V (2e-) as half-wave potentials. The redox wave associated with the two-electron transfer on the negative low-potential side indicates the presence of through-bond charge delocalisation in the monoanionic state. Furthermore, the LUMO level of bi-TpTANC is -4.1 eV, which indicates its potential as a promising air-stable n-type material.

2.
Dalton Trans ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847374

ABSTRACT

Investigations into the construction of functional molecular crystals and their external stimuli-induced structural transformations represent compelling research topics, particularly for the advancement of sensors and memory devices. However, reports on the development of molecular crystals constructed from discrete mononuclear complex units and exhibiting structural transformations via the adsorption/desorption of guest molecules are scarce. In this study, we synthesised three molecular crystals composed of [Al(sap)(acac)(H2O)]·(solvent) (H2sap = 2-salicylideneaminophenol, acac = acetylacetonate, solvent = Me2CO (Al·Me2CO), MeCN (Al·MeCN), or DMSO (Al·DMSO)), and demonstrated solvent vapour-responsive reversible crystal-to-crystal structural transformations in Al·Me2CO and Al·MeCN. For Al·DMSO, exposure to DMSO vapour led to the formation of DMSO-coordinated compound [Al(sap)(acac)(DMSO)], indicating an irreversible structural transformation. This solvent vapour-responsive system incorporates a luminescent mononuclear aluminium(III) complex (λmax = 539-552 nm, Φem = 0.07-0.27) as the molecular building unit for the porous-like framework. Therefore, we synthesised a new functional molecular material and a potential molecular building unit that facilitates guest fixation through hydrogen-bonding.

3.
Chemistry ; 29(33): e202203937, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37017134

ABSTRACT

The development of molecule-based multifunctional switchable materials that exhibit a switch of polarity and dielectric property are extremely limited. We have demonstrated solvent-vapour-induced reversible molecular rearrangements between nonpolar crystals [Al(sap)(acac)(sol)] (H2 sap=2-salicylideneaminophenol, acac=acetylacetonate, sol=MeOH (1), EtOH (2)) and polar crystal [Al(sap)(acac)(DMSO)] (3). This crystal-to-crystal structural transformation was accompanied by a switch of second harmonic generation (SHG) and dielectric properties, including the formation of ferroelectric domains, thus reflecting the SHG-active polar Cc space group of 3. This is the first reported example of dielectric properties and polarity switching in luminescent mononuclear aluminium(III) complexes, which exhibit strong green emission in the solid state.


Subject(s)
Luminescence , Solvents/chemistry , Aluminum/chemistry
4.
Phys Chem Chem Phys ; 24(38): 23602-23611, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36134431

ABSTRACT

To produce high-efficiency organic light-emitting diodes, materials that exhibit thermally activated delayed fluorescence (TADF) are attracting attention as alternatives to phosphorescent materials containing heavy metallic elements. Melem, a small molecule with a heptazine backbone composed only of nitrogen, carbon, and hydrogen, is known to emit light in the near-ultraviolet region and exhibit high photoluminescence (PL) quantum yield and delayed fluorescence. However, the mechanism underlying the high PL quantum yield remains unclear. This study aimed to elucidate the mechanism of the high PL quantum yield of melem by examining its optical properties in detail. When the amount of dissolved oxygen in the melem solution was increased by bubbling oxygen through it, the PL quantum yield and emission lifetime decreased significantly, indicating that the triplet state was involved in the light-emission mechanism. Furthermore, the temperature dependence of the PL intensity of melem was investigated; the PL intensity decreased with decreasing temperature, indicating that it increases thermally. The experimental results show that melem is a TADF material that produces an extremely high PL quantum yield by upconversion from the triplet to the singlet excited state.

5.
Chemistry ; 28(47): e202202355, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35997134

ABSTRACT

Invited for the cover of this issue is mainly the group of Makoto Tadokoro and co-workers at Tokyo University of Science. Other co-workers are Masaki Itoh, Ryota Nishimura, Kensuke Sekiguchi (TUS students), Dr. Norihisa Hoshino (Tohoku Univ.), Dr. Hajime Kamebuchi (Nihon Univ.), Dr. Jun Miyazaki (Tokyo Denki Univ.), Prof. Motohiro Mizuno (Kanazawa Univ.) and Prof. Tomoyuki Akutagawa (Tohoku Univ.). The image depicts on two mechanisms of proton transport rotations of the proton-conductive starburst molecule [RuIII (HIm)3 (Im)3 ]. Read the full text of the article at 10.1002/chem.202201397.


Subject(s)
Imidazoles , Protons , Humans , Hydrogen Bonding , Imidazoles/chemistry , Ligands , Temperature
6.
Chemistry ; 28(47): e202201397, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35760750

ABSTRACT

A new H-bonded crystal [RuIII (Him)3 (Im)3 ] with three imidazole (Him) and three imidazolate (Im- ) groups was prepared to obtain a higher-temperature proton conductor than a Nafion membrane with water driving. The crystal is constructed by complementary N-H⋅⋅⋅N H-bonds between the RuIII complexes and has a rare Icy-c* cubic network topology with a twofold interpenetration without crystal anisotropy. The crystals show a proton conductivity of 3.08×10-5  S cm-1 at 450 K and a faster conductivity than those formed by only HIms. The high proton conductivity is attributed to not only molecular rotations and hopping motions of HIm frameworks that are activated at ∼113 K, but also isotropic whole-molecule rotation of [RuIII (Him)3 (Im)3 ] at temperatures greater than 420 K. The latter rotation was confirmed by solid-state 2 H NMR spectroscopy; probable proton conduction routes were predicted and theoretically considered.

7.
Dalton Trans ; 50(16): 5452-5464, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33908930

ABSTRACT

Functional metal-organic squares (MOSs) and metal-organic cubes (MOCs) are important building units for zeolite-like metal-organic frameworks (ZMOFs), which are required to exhibit solid-state properties, such as dielectric, conductive, and magnetic properties. This work describes the preparation and magnetism of a tetracopper(ii) macrocyclic complex [CuII4(im-H2bizn)4(DMSO)3(THF)](ClO4)4·8DMSO (1) (Him-H2bizn = 4,5-bis(4,5-dihydro-1H-imidazol-2-yl)imidazole) as a MOS and octametallic clusters [NiII8(im-H2bizn)12](ClO4)4·10MeOH·3H2O (2) and [MnII4MnIII4(im-H2bizn)12](ClO4)8·14MeOH (3) as MOCs. The CuII ion in 1 possesses a five-coordinated square pyramidal geometry, resulting in the formation of an M4L4-type square, which gives an estimated intramolecular antiferromagnetic interaction with an exchange coupling constant of JCu-Cu = -95 K. Meanwhile, 2 and 3 present six-coordinated octahedral geometries, giving M8L12-type cubes, of which 2 is a normal paramagnetic compound with intramolecular antiferromagnetic interactions, and where JNi-Ni = -32 K. The most notable compound 3 is a MnII4MnIII4 mixed valence state compound, which exhibits a slow magnetization relaxation behavior similar to that of single-molecule magnets. This is attributed to the contribution of magnetic anisotropy caused by the Jahn-Teller effect of the MnIII ions. Utilizing a modified Arrhenius plot to extract the values of the thermal barrier for magnetization reversal (Ea/kB) and the pre-exponential factor (τ0), the parameters for the relaxation behavior were estimated to be Ea/kB = 6.38 K and τ0 = 3.87 × 10-7 s. UV-vis spectroscopy and electrochemical measurements in solution were also carried out. Compound 3 will be expected to lead to a solid-state material in which the magnetic and dielectric properties of encapsulated small molecules cooperate with the slow magnetization relaxation properties of the MOC backbone.

8.
Materials (Basel) ; 14(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652700

ABSTRACT

The structural and electronic properties of interfaces composed of donor and acceptor molecules play important roles in the development of organic opto-electronic devices. Epitaxial growth of organic semiconductor molecules offers a possibility to control the interfacial structures and to explore precise properties at the intermolecular contacts. 5,6,11,12-tetraazanaphthacene (TANC) is an acceptor molecule with a molecular structure similar to that of pentacene, a representative donor material, and thus, good compatibility with pentacene is expected. In this study, the physicochemical properties of the molecular interface between TANC and pentacene single crystal (PnSC) substrates were analyzed by atomic force microscopy, grazing-incidence X-ray diffraction (GIXD), and photoelectron spectroscopy. GIXD revealed that TANC molecules assemble into epitaxial overlayers of the (010) oriented crystallites by aligning an axis where the side edges of the molecules face each other along the [1¯10] direction of the PnSC. No apparent interface dipole was found, and the energy level offset between the highest occupied molecular orbitals of TANC and the PnSC was determined to be 1.75 eV, which led to a charge transfer gap width of 0.7 eV at the interface.

9.
Chem Commun (Camb) ; 57(18): 2249-2252, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33616138

ABSTRACT

[{ReI(CO)3(Hbim)}3(tpta)]2 (1, Hbim- = 2,2'-biimidazolate monoanion, tpta = 2,4,6-tripyridyl-1,3,5-triazine) was prepared as a nano-space supramolecule by using a new group of H-bonded coordination capsules. The hamburger bun-shaped half unit [{ReI(CO)3(Hbim)}3(tpta)] contains six intermolecular H-bonds of Hbim- ligands with complementary dual NHN types, and three [ReI(CO)3(Hbim)] are coordinated by bridging tridentate tpta. Interestingly, mechanical grinding easily would convert single crystals of 1 to an amorphous state with minor crystallinity while maintaining the nano-space pores. The ground sample can reversibly uptake and release small molecules such as CO2 and (CH2Cl)2.

10.
Chemistry ; 27(13): 4287-4290, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33205557

ABSTRACT

The entropy change associated with proton-coupled electron transfer (PCET) reactions significantly enhance the Seebeck coefficient (Se ) of thermocells. A redox pair of [Ru(Hx im)6 ]2+/3+ (Him=imidazole, x=0≈1) releases three protons in their one-electron redox reactions in thermocells, which gave a remarkably high Se of -3.7 mV K-1 as confirmed by temperature-dependent square wave voltammetry. The value of Se is proportional to the redox reaction entropy (ΔSrc ), which increased with the number of dissociating protons. This result demonstrates the utility of PCET reaction toward efficient thermoelectric conversion.

11.
Inorg Chem ; 59(12): 8013-8024, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32441925

ABSTRACT

Double-bridged cofacial Ni porphyrin dimers 2 with 2,2'-bipyridyl pillars were effectively prepared by a one-step reductive homocoupling reaction of bis(chloropyridyl)-substituted Ni porphyrin derivatives followed by a specific separation of a cyanopropyl-modified silica gel column using pyridine eluent systems. The structural analyses of 2 and its Pd complex were carried out in their solid and solution states by means of X-ray single crystal analysis and NMR, respectively. The complexation of η3-allylpalladium chloride (Pd) with 2 on the spatially restricted 2,2-bipyridine moieties on 2 gave a 2:1 (Pd:2) complex, in which the 2,2'-bipyridine ligands only provided one of the N atoms on a 2,2'-bipyridine ligand to a Pd. Therefore, the 2,2-bipyridine moieties acted as a monodentate ligand.

12.
Dalton Trans ; 48(40): 15212-15219, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31577291

ABSTRACT

We have determined the X-ray structure of Ir(pnbi)2(acac) (pnbi = 2-phenanthren-9-yl-1-phenyl-1H-benzimidazole; acac = acetylacetonate), which exhibits a six-membered metallocycle around the Ir center. This result stands in sharp contrast to previously postulated structures of Ir(pnbi)2(acac), which assumed a five-membered metallocycle. In this paper, we focus on the relative stability of five- and six-membered Ir(C^N) ring structures. DFT calculations of the total energies of Ir-(C^N) complexes indicated that six-membered structures are more stable when bulky substituents are present in the benzimidazole unit. When the phenanthrene group of pnbi was replaced with a naphthalene moiety, DFT calculations predicted that five-membered cycles are more stable than six-membered rings, which was confirmed experimentally by a single-crystal X-ray diffraction analysis. The steric bulk of the phenanthrene-containing polyaromatic ring ligand thus induces greater interligand repulsion between the two ligands, which plays an important role in determining the cyclometalation route. The Ir complexes examined in this study exhibit red emission (λem ≈ 660 nm) with relatively low quantum yields.

13.
Org Biomol Chem ; 17(34): 7884-7890, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31287489

ABSTRACT

We report a novel N-heteroheptacenequinone derivative (C6OAHCQ) as a large π-conjugated framework. C6OAHCQ shows good electron-accepting behaviour owing to eight electron-deficient imino-N atoms and two carbonyl moieties and excellent solubility in common organic solvents. When a potential between 0 and -2.20 V is applied, C6OAHCQ is able to accept four electrons, which is more than fullerene C60 (three electrons) could accept in this voltage range. Moreover, a solution of C6OAHCQ and nBu4NPF6 in CH2Cl2 exhibits a clearly reversible brown-to-green colour change, suggesting that C6OAHCQ has potential as an electrochromic material.

16.
Photochem Photobiol ; 95(4): 946-950, 2019 07.
Article in English | MEDLINE | ID: mdl-30613988

ABSTRACT

Melanin is rigidly constructed by several nitrogen-containing aromatic rings, and its excess accumulation in skin tissue is closely associated with melanosis. Although visible lasers (wavelength: 600-1000 nm) are conventionally used for the photo-thermolysis of melanocyte, several pigmented nevi are difficult to be treated. Here, we propose an alternate method for targeting the molecular structure of melanin using an infrared free-electron laser (FEL) tuned to 5.8 µm that corresponds to the stretching vibrational mode of carboxylate group. A drastic morphological change on the black-colored surface of melanin powder was observed after the pulse irradiation with power energy of 500 mJ cm-2 , and the minimum irradiation time for damage to the morphology was 1.4 s. Analyses by mass spectroscopy, infrared spectroscopy, and 13 C-nuclear magnetic resonance implied that a pyrrole group was removed by the FEL irradiation. In addition, the FEL irradiation dispersed almost all of the melanoma cells from a culture solution without any influence on other ingredients in the medium, and one-cell analysis by infrared microscopy showed that the structure of melanoma could be substantially damaged by the irradiation. This study proposes the potency of intense mid-infrared laser as novel alternative way to reduce melanin.


Subject(s)
Lasers/classification , Melanins/chemistry , Cell Line, Tumor , Humans , Laser Therapy , Melanoma/radiotherapy , Microscopy
17.
Dalton Trans ; 48(2): 535-546, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30525138

ABSTRACT

H-Bonded metal complex dimers with reversible redox behaviour, which are connected by a low-barrier hydrogen bond (LBHB) with a very low energy barrier for proton transfer, can provide a unique mixed-valency state stabilized by the proton-coupled electron transfer (PCET) phenomenon. Using cyclic voltammetry measurements, newly prepared [ReIIICl2(PnPr3)2(Hbim)]2 (2) and [OsIIICl2(PnPr3)2(Hbim)]2 (3) existing as H-bonded dimers in a CH2Cl2 solution showed a four-step and four-electron transfer containing two mixed-valency states of ReIIReIII and ReIIIReIV, and OsIIOsIII and OsIIIOsVI, respectively. Furthermore, [ReIIICl2(PnPr3)2(Agbim)]2 (4) and [OsIIICl2(PnPr3)2(Agbim)]2 (5), bridged by two Ag+ ions instead of two H-bonding protons, were prepared, and their electrochemical behaviours changed to a two-step and four-electron transfer. It is clear that the H-bonded complex dimers 2 and 3, connected by an LBHB, can be electrochemically stabilized into unique pairs of mixed-valency states by PCET, and the H-bonding proton transfer also controls the electrochemical redox behaviour.

18.
Sci Rep ; 7(1): 16785, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196734

ABSTRACT

K3Cu3AlO2(SO4)4 is a highly one-dimensional spin-1/2 inequilateral diamond-chain antiferromagnet. Spinon continuum and spin-singlet dimer excitations are observed in the inelastic neutron scattering spectra, which is in excellent agreement with a theoretical prediction: a dimer-monomer composite structure, where the dimer is caused by strong antiferromagnetic (AFM) coupling and the monomer forms an almost isolated quantum AFM chain controlling low-energy excitations. Moreover, muon spin rotation/relaxation spectroscopy shows no long-range ordering down to 90 mK, which is roughly three orders of magnitude lower than the exchange interaction of the quantum AFM chain. K3Cu3AlO2(SO4)4 is, thus, regarded as a compound that exhibits a Tomonaga-Luttinger spin liquid behavior at low temperatures close to the ground state.

19.
Phys Chem Chem Phys ; 19(36): 24769-24791, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28868562

ABSTRACT

The fictitious spin-1/2 Hamiltonian approach is the putative method to analyze the fine-structure/hyperfine ESR spectra of high spin metallocomplexes having sizable zerofield splitting (ZFS), thus giving salient principal g-values far from around g = 2 without explicitly providing their ZFS parameters in most cases. Indeed, the significant departure of the g-values from g = 2 is indicative of the occurrence of their high spin states, but naturally they never agree with true g-values acquired by quantum chemical calculations such as sophisticated DFT or ab initio MO calculations. In this work, we propose facile approaches to determine the magnetic tensors of high spin metallocomplexes having sizable ZFS, instead of performing advanced high-field/high-frequency ESR spectroscopy. We have revisited analytical expressions for the relationship between effective g-values and true principal g-values for high spins. The useful analytical formulas for the geff-gtrue relationships are given for S's up to 7/2. The genuine Zeeman perturbation formalism gives the exact solutions for S = 3/2, and for higher S's it is much more accurate than the pseudo-Zeeman perturbation approach documented so far (A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions, 1970; J. R. Pilbrow, J. Magn. Reson., 1978, 31, 479; F. Trandafir et al., Appl. Magn. Reson., 2007, 31, 553; M. Fittipaldi et al., J. Phys. Chem. B, 2008, 112, 3859), in which the E(Sx2 - Sy2) term is putatively treated to the second order. To show the usefulness of the present approach, we exploit FeIII(Cl)OEP (S = 5/2) (OEP: 2,3,7,8,12,13,17,18-octaethylporphyrin) and CoIIOEP (S = 3/2) well magnetically diluted in the diamagnetic host crystal lattice of NiIIOEP. The advantage of single-crystal ESR spectroscopy lies in the fact that the molecular information on the principal axes of the magnetic tensors is crucial in comparing with reliable theoretical results. In high spin states of metallocomplexes with sizable ZFS in pseudo-octahedral symmetry, their fine-structure ESR transitions for the principal z-axis orientation appear in the lower field far from g = 2 at the X-band, disagreeing with the putative intuitive picture obtained using relevant ESR spectroscopy. A ReIII,IV dinuclear complex in a mixed valence state exemplifies the cases, whose fine-structure/hyperfine ESR spectra of the neat crystals have been analyzed in their principal-axis system. The DFT-based/ab initio MO calculations of the magnetic tensors for all the high spin entities in this work were carried out.

20.
Inorg Chem ; 56(14): 8513-8526, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28682602

ABSTRACT

A proton-coupled electron transfer (PCET) reaction was widely studied with isolated organic molecules and metal complexes in solution in view of the biological catalytic reaction, while studying this reaction in the crystalline or solid-state phase, which has a novel example, would give insight into the rather internal environment of proteins without solvation and a creation of new molecular materials. We tried to crystallize a hydrogen-bonded (H-bonded) coordination polymer with one-dimensional nanoporous channels, formed from redox-active RuIII complexes, [RuIII(Hbim)3] (Hbim- = 2,2'-biimidazolate monoanion). As a result, a synchronized collective PCET phenomenon was observed for the molecular nanoporous crystal by novel solid-state cyclic voltammetry (CV), which could be measured by only setting some crystals on the electrode surface. The nanoporous crystals, {[RuIII(Hbim)3]}n (1), are simultaneously induced to a synchronized collective RuIIRuIII mixed-valence state, {RuIIRuIII}n, with alternating arrays of RuII and RuIII complexes by PCET in a way of the reductive state of {RuIIRuII}n. Further, a new crystal with {RuIIRuIII}n, {[RuII(H2bim)(Hbim)2][RuIII(bim) (Hbim)2][K(MeOBz)6]}n (2), was also prepared, and the solid-state CV revealed the same electrochemical behavior of {RuIIRuIII}n with 1. The single crystal with {RuIIRuIII}n of 2 was unusually a semiconductor with 5.12 × 10-6 S/cm conductivity at 298 K by an impedance method (8.01 × 10-6 S/cm by a direct-current method at 277 K). Thus, an unprecedented electron-hopping conductor driven by a low-barrier proton transfer through a PCET mechanism (Ea = 0.30 eV) was realized in the H-bonding molecular crystal with {RuIIRuIII}n. Such studies on a PCET reaction in the crystalline state is not only worthwhile as a model of essential biological reactions without solvation, but also proposed to a new design of molecular materials to occur an electron transfer by using an intermolecular H-bond.

SELECTION OF CITATIONS
SEARCH DETAIL
...