Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(5): e16199, 2023 May.
Article in English | MEDLINE | ID: mdl-37215910

ABSTRACT

This study was carried out in the dense semi-deciduous production forest of East Cameroon. The objective of this work of this study was to provide comparative floristic knowledge that can serve as a basis for the planning and sustainable management of ligneous plant resources in Communal Forests before and after logging. Sampling was done in unlogged and logged forest. Data collection was carried out using the linear transects subdivided into 10 plots of 25 m × 20 m (500 m2) with an equidistance of 225 m for the inventory of all trees with dbh ≥10 cm installed measured at 1.3 m above ground level. Nested quadrats 5 m × 5 m, oriented south-west and north-east were set up in each plot for the counting and identification of all individuals with a diameter less than 10 cm. The analysis of inventory data showed that the floristic composition was higher in the unlogged forest. The individuals were more evenly distributed in the logged (Pielou's equitability index = 0.83) than in the unlogged forest. The study of the functional spectra showed that the flora of the two forest types was dominated by Guinean-Congolese species (67.57% in the unlogged forest and 63.07% in the logged forest) and Phanerophytes, particularly Mesophanerophytes. The dominance of sarcochorous species reveals that the main mode of dissemination in this forest is zoochory, particularly endozoochory. The presence of pleochroic species in the logged forest reveals the importance of dissemination by water in the environment. The plants surveyed were divided into five plant assemblages (three for logged forest and two for unlogged forest) based on ecological parameters. The findings of this study suggest that forest management which combines assisted natural regeneration with the natural process of secondary succession facilitates the reconstitution of the vegetation cover and, by extension, the conservation of biodiversity in post-logging forest concessions.

2.
Ecology ; 101(7): e03052, 2020 07.
Article in English | MEDLINE | ID: mdl-32239762

ABSTRACT

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Subject(s)
Forests , Wood , Africa , Brazil , Ecosystem , Tropical Climate
3.
Nature ; 579(7797): 80-87, 2020 03.
Article in English | MEDLINE | ID: mdl-32132693

ABSTRACT

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.


Subject(s)
Carbon Dioxide/metabolism , Carbon Sequestration , Forests , Trees/metabolism , Tropical Climate , Africa , Atmosphere/chemistry , Biomass , Brazil , Droughts , History, 20th Century , History, 21st Century , Models, Theoretical , Temperature
4.
Nat Plants ; 5(2): 133-140, 2019 02.
Article in English | MEDLINE | ID: mdl-30664730

ABSTRACT

Quantifying carbon dynamics in forests is critical for understanding their role in long-term climate regulation1-4. Yet little is known about tree longevity in tropical forests3,5-8, a factor that is vital for estimating carbon persistence3,4. Here we calculate mean carbon age (the period that carbon is fixed in trees7) in different strata of African tropical forests using (1) growth-ring records with a unique timestamp accurately demarcating 66 years of growth in one site and (2) measurements of diameter increments from the African Tropical Rainforest Observation Network (23 sites). We find that in spite of their much smaller size, in understory trees mean carbon age (74 years) is greater than in sub-canopy (54 years) and canopy (57 years) trees and similar to carbon age in emergent trees (66 years). The remarkable carbon longevity in the understory results from slow and aperiodic growth as an adaptation to limited resource availability9-11. Our analysis also reveals that while the understory represents a small share (11%) of the carbon stock12,13, it contributes disproportionally to the forest carbon sink (20%). We conclude that accounting for the diversity of carbon age and carbon sequestration among different forest strata is critical for effective conservation management14-16 and for accurate modelling of carbon cycling4.


Subject(s)
Carbon Sequestration , Carbon/analysis , Forests , Trees/physiology , Carbon Cycle , Democratic Republic of the Congo , Time Factors , Trees/growth & development , Tropical Climate
5.
PLoS One ; 9(5): e97585, 2014.
Article in English | MEDLINE | ID: mdl-24844914

ABSTRACT

BACKGROUND: Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. METHODOLOGY/PRINCIPAL FINDINGS: We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement-revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. CONCLUSIONS/SIGNIFICANCE: Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species.


Subject(s)
Biodiversity , Fabaceae/physiology , Forests , Cameroon , Introduced Species
SELECTION OF CITATIONS
SEARCH DETAIL
...