Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727370

ABSTRACT

The time-dependent interfacial adhesion between rock and fresh mortar is key for printing concrete linings in mountain tunnels. However, a scientific deficit exists in the time-dependent evolution of the interfacial adhesion, which can cause adhesion failure when printing tunnel lining. Nanoclay has the potential to increase the interfacial adhesion and eliminate the adhesion failure. Before the actual printing of tunnel linings, the time-dependent interfacial adhesion between artificial rock and fresh mortar modified by nanoclay should be understood. This paper studied the time-dependent interfacial adhesion based on fast tack tests, fast shear tests, and isothermal calorimetry tests. With the addition of nanoclay, the maximum tensile stress and the maximum shear stress increased. Compared with a reference series, the maximum interfacial tensile stress in a 0.3% nanoclay series increased by 106% (resting time 1 min) and increased by 209% (resting time 32 min). A two-stage evolution of the interfacial adhesion was found with the addition of nanoclay. In the first stage, the time-dependent interfacial adhesion increased rapidly. A 0.3% NC series showed an increase rate six times higher than that of the reference series. As the matrices aged, the increase rate slowed down and followed a linear pattern of increase, still higher than that of the reference series. The stiffening of fresh matrices resulted in the interface failure mode transition from a ductile failure to a brittle failure. The effect of nanoclay on flocculation and on accelerating the hydration contributed to the time-dependent interfacial adhesion between artificial rock and fresh mortar.

2.
Materials (Basel) ; 9(8)2016 Aug 09.
Article in English | MEDLINE | ID: mdl-28773793

ABSTRACT

This work is intended to provide a better understanding about the properties and roles of the reaction rim in an alkali-silica reaction. A simplified calcium-alkali-silicate system was created to simulate the multiple interactions among reactive silica, alkaline solution and portlandite near the aggregate surface during the formation and evolution of the reaction rim in an alkali-silica reaction. A transport barrier preventing the migration of calcium and silicate through itself was found on the interface between the alkali silicate and the calcium hydroxide. The barrier was mainly composed of calcium alkali silicate with silicon-oxygen organizations of Q² and Q³ according to the results of 29Si nuclear magnetic resonance, the calcium to silica mole ratio ranging from 0.22 to 0.53 and the alkali to silica ratio ranging from 0.20 to 0.26 based the location of the elemental compositional analysis and the storage period of the system.

3.
Materials (Basel) ; 9(9)2016 Sep 20.
Article in English | MEDLINE | ID: mdl-28773907

ABSTRACT

This work aims at providing a better understanding of the mechanical properties of the reaction rim in the alkali-silica reaction. The elastic modulus of the calcium alkali silicate constituting the reaction rim, which is formed at the interface between alkali silicate and Ca(OH)2 in a chemically-idealized system of the alkali-silica reaction, was studied using nano-indentation. In addition, the corresponding calcium to silica mole ratio of the calcium alkali silicate was investigated. The results show that the elastic modulus of the calcium alkali silicate formed at the interface increased with the increase of the calcium to silica mole ratio and vice versa. Furthermore, the more calcium that was available for interaction with alkali silicate to form calcium alkali silicate, the higher the calcium to silica mole ratio and, consequently, the higher the elastic modulus of the formed calcium alkali silicate. This work provides illustrative evidence from a mechanical point of view on how the occurrence of cracks due to the alkali-silica reaction (ASR) is linked to the formation of the reaction rim. It has to be highlighted, however, that the simplified calcium-alkali-silicate system in this study is far from the real condition in concrete.

SELECTION OF CITATIONS
SEARCH DETAIL