Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infection ; 51(1): 91-96, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35513690

ABSTRACT

Molecular diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time reverse transcription polymerase chain reaction (RT-PCR) in respiratory specimens is considered the gold standard method. This method is highly sensitive and specific but it has some limitations such as being expensive and requiring special laboratory equipment and skilled personnel. RapidFor™ Antigen Rapid Test Kit is a commercially available Ag-RDT which is produced in Turkey and designed to detect the nucleocapsid antigen of SARS-CoV-2 in nasopharyngeal swab samples. The aim of this study was to evaluate the performance of this novel SARS-CoV-2 antigen detection considering the RT-PCR method as the gold standard. Four hundred forty-four nasopharyngeal swab samples which were collected from the patients who met clinical criteria of COVID-19 from ten centers in Turkey between September 2020 and February 2021 were included in the study. All the nasopharyngeal swab samples were tested for SARS-CoV-2 RNA using commercial RT-PCR kits (Bioeksen and A1 Lifesciences, Istanbul, Turkey) according to the manufacturer's instructions. Viral loads were assessed according to the cycle threshold (Ct) values. RapidFor™ SARS-CoV-2 antigen test (Vitrosens Biotechnology, Istanbul, Turkey) was used to investigate the presence of SARS-CoV-2 antigen in all samples following the manufacturer's instructions. Out of 444 nasopharyngeal swab samples tested, 346 (77.9%) were positive and 98 (22.1%) were negative for SARS-CoV-2 RNA by RTPCR. Overall sensitivity of the RapidFor™. Antigen Rapid Test Kit was 80.3% whereas specificity was found to be 87.8%. Positivity rate of rapid antigen test in samples with Ct values over 25 and below 30 was 82.7%, while it increased to 95.7% in samples 20 ≤ Ct < 25 and reached 100% in samples with Ct values below 20. RapidFor™ SARS-CoV-2 Ag test might be a good choice in the screening of symptomatic and asymptomatic patients and their contacts for taking isolation measures early, with advantages over RT-PCR as being rapid, easy and being applicable in every laboratory and even at point of care.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , RNA, Viral , SARS-CoV-2/genetics , Clinical Laboratory Techniques , Sensitivity and Specificity , COVID-19 Testing
2.
PLoS Biol ; 18(6): e3000679, 2020 06.
Article in English | MEDLINE | ID: mdl-32555591

ABSTRACT

Centriolar satellites are dynamic, membraneless granules composed of over 200 proteins. They store, modify, and traffic centrosome and primary cilium proteins, and help to regulate both the biogenesis and some functions of centrosomes and cilium. In most cell types, satellites cluster around the perinuclear centrosome, but their integrity and cellular distribution are dynamically remodeled in response to different stimuli, such as cell cycle cues. Dissecting the specific and temporal functions and mechanisms of satellites and how these are influenced by their cellular positioning and dynamics has been challenging using genetic approaches, particularly in ciliated and proliferating cells. To address this, we developed a chemical-based trafficking assay to rapidly and efficiently redistribute satellites to either the cell periphery or center, and fuse them into stable clusters in a temporally controlled way. Induced satellite clustering at either the periphery or center resulted in antagonistic changes in the pericentrosomal levels of a subset of proteins, revealing a direct and selective role for their positioning in protein targeting and sequestration. Systematic analysis of the interactome of peripheral satellite clusters revealed enrichment of proteins implicated in cilium biogenesis and mitosis. Importantly, induction of peripheral satellite targeting in ciliated cells revealed a function for satellites not just for efficient cilium assembly but also in the maintenance of steady-state cilia and in cilia disassembly by regulating the structural integrity of the ciliary axoneme. Finally, perturbing satellite distribution and dynamics inhibited their mitotic dissolution, and mitotic progression was perturbed only in cells with centrosomal satellite clustering. Collectively, our results for the first time showed a direct link between satellite functions and their pericentrosomal clustering, suggested new mechanisms underlying satellite functions during cilium assembly, and provided a new tool for probing temporal satellite functions in different contexts.


Subject(s)
Centrioles/metabolism , Cilia/metabolism , Cytoplasmic Granules/metabolism , Autoantigens/chemistry , Autoantigens/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Mitosis , Phenotype , Protein Domains , Protein Multimerization , Reproducibility of Results
3.
Asian Pac J Cancer Prev ; 19(4): 927-932, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29693344

ABSTRACT

Background: Gastric cancer is the second most common cancer among the malign cancer types. Inefficiency of traditional techniques both in diagnosis and therapy of the disease makes the development of alternative and novel techniques indispensable. As an alternative to traditional methods, tumor specific targeting small peptides can be used to increase the efficiency of the treatment and reduce the side effects related to traditional techniques. The aim of this study is screening and identification of individual peptides specifically targeted to human gastric cancer cells using a phage-displayed peptide library and designing specific peptide sequences by using experimentally-eluted peptide sequences. Methods: Here, MKN-45 human gastric cancer cells and HFE-145 human normal gastric epithelial cells were used as the target and control cells, respectively. 5 rounds of biopannning with a phage display 12-peptide library were applied following subtraction biopanning with HFE-145 control cells. The selected phage clones were established by enzyme-linked immunosorbent assay and immunofluorescence detection. We first obtain random phage clones after five biopanning rounds, determine the binding levels of each individual clone. Then, we analyze the frequencies of each amino acid in best binding clones to determine positively overexpressed amino acids for designing novel peptide sequences. Results: DE532 (VETSQYFRGTLS) phage clone was screened positive, showing specific binding on MKN-45 gastric cancer cells. DE-Obs (HNDLFPSWYHNY) peptide, which was designed by using amino acid frequencies of experimentally selected peptides in the 5th round of biopanning, showed specific binding in MKN-45 cells. Conclusion: Selection and characterization of individual clones may give us specifically binding peptides, but more importantly, data extracted from eluted phage clones may be used to design theoretical peptides with better binding properties than even experimentally selected ones. Both peptides, experimental and designed, may be potential candidates to be developed as useful diagnostic or therapeutic ligand molecules in gastric cancer research.


Subject(s)
High-Throughput Screening Assays/methods , Neoplasm Proteins/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Library , Stomach Neoplasms/drug therapy , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Neoplasm Proteins/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...