Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35409937

ABSTRACT

Noise annoyance is usually estimated based on time-averaged noise metrics. However, such metrics ignore other potentially important acoustic characteristics, in particular the macro-temporal pattern of sounds as constituted by quiet periods (noise breaks). Little is known to date about its effect on noise annoyance and cognitive performance, e.g., during work. This study investigated how the macro-temporal pattern of road traffic noise affects short-term noise annoyance and cognitive performance in an attention-based task. In two laboratory experiments, participants worked on the Stroop task, in which performance relies predominantly on attentional functions, while being exposed to different road traffic noise scenarios. These were systematically varied in macro-temporal pattern regarding break duration and distribution (regular, irregular), and played back with moderate LAeq of 42-45 dB(A). Noise annoyance ratings were collected after each scenario. Annoyance was found to vary with the macro-temporal pattern: It decreased with increasing total duration of quiet periods. Further, shorter but more regular breaks were somewhat less annoying than longer but irregular breaks. Since Stroop task performance did not systematically vary with different noise scenarios, differences in annoyance are not moderated by experiencing worsened performance but can be attributed to differences in the macro-temporal pattern of road traffic noise.


Subject(s)
Noise, Transportation , Cognition , Environmental Exposure , Humans , Noise, Transportation/adverse effects , Task Performance and Analysis
2.
Front Psychol ; 11: 344, 2020.
Article in English | MEDLINE | ID: mdl-32194486

ABSTRACT

Room acoustical parameters have frequently been used to evaluate or predict the acoustical performance in rooms. For housing complexes in urban areas with high population density, it is important to improve acoustic performance not solely indoors, but outdoors as well; for example on the balconies or in the yards. This paper investigates to what extent classic room acoustical parameters would be able to predict the perceived acoustic comfort in outdoor spaces (i.e., courtyards) of virtual housing complexes. Individual and combined effects of a series of independent variables (such as facade absorption, sound source, and observer position) on short-term acoustic comfort were investigated in three laboratory experiments. ODEON software was used for virtual inner yard simulation, whereby 2D spatialization was carried out for a playback over five loudspeakers. Moderate facade absorption was found to increase acoustic comfort. Relatively pleasant and relatively unpleasant sounds were associated with comfort and discomfort, respectively. Lower acoustic comfort ratings were observed at receiver positions with high sound pressure levels and/or strong flutter echoes. A further analysis of the results is carried out here with respect to the room acoustical parameters and their ability to predict the acoustic comfort ratings. Speech transmission index (STI), definition (D50), clarity of speech (C50) and music (C80), early decay time (EDT), and lateral energy fraction (LF80) were found to be significantly correlated with acoustic comfort. They were found to be significant predictors of acoustic comfort in a series of linear mixed-effect models. Furthermore, linear mixed-effect models were established with the A-weighted equivalent continuous sound level, LAeq, as a significant predictor of acoustic comfort.

3.
J Acoust Soc Am ; 145(2): 956, 2019 02.
Article in English | MEDLINE | ID: mdl-30823779

ABSTRACT

Helicopter noise exhibits distinctive acoustical characteristics (e.g., pulsation) compared to noise from propeller-driven aircraft which contains tonal components. Whereas, at comparable sound exposure levels (LAE), annoyance reactions to these sources might be different, knowledge of potential annoyance differences is scarce. This paper reports a comparison between short-term annoyance reactions to noise from light-weight helicopters and propeller-driven aircraft in a laboratory setup. Stimuli were presented with a 3D sound reproduction system in a listening test facility based on field recordings of takeoffs and landings. Propagation filtering and amplitude changes were carried out to simulate various propagation distances and source levels, covering a reasonable LAE range from 64 to 85 dB(A) for a stimuli length of 24 s. Fifty-six subjects rated their short-term annoyance reactions on the ICBEN 11-point numerical scale. Associations between design variables (source type, procedure, and LAE) and short-term annoyance were explored by means of a linear mixed-effect model. LAE was found to be the major predictor. For the major range of LAE, no significant difference was found between annoyance to noise from the two aircraft types. Observed level differences at equal annoyance ratings were below 1 dB. Furthermore, helicopter landings were found slightly more annoying than helicopter takeoffs.

4.
Article in English | MEDLINE | ID: mdl-30654541

ABSTRACT

Housing complex residents in urban areas are not only confronted with typical noise sources, but also everyday life sounds, e.g., in the yards. Therefore, they might benefit from the increasing interest in soundscape design and acoustic comfort improvement. Three laboratory experiments (with repeated-measures complete block designs) are reported here, in which effects of several variables on short-term acoustic comfort were investigated. A virtual reference inner yard in the ODEON software environment was systematically modified by absorbers on building facades, whereby single-channel recordings were spatialized for a 2D playback in laboratory. Facade absorption was found, generally, to increase acoustic comfort. Too much absorption, however, was not found to be helpful. In the absence of any absorbers on the facade, absorbing balcony ceilings tended to improve acoustic comfort, however, non-significantly. Pleasant and unpleasant sounds were associated with comfort and discomfort, accordingly. This should encourage architects and acousticians to create comfortable inner yard sound environments, where pleasant and unpleasant sound occurrence probabilities are designed to be high and low, respectively. Furthermore, significant differences were observed between acoustic comfort at distinct observer positions, which could be exploited when designing inner yards.


Subject(s)
Auditory Perception , Built Environment , Environment Design , Acoustics , Adult , Female , Housing , Humans , Male , Middle Aged , Sound , Young Adult
5.
J Acoust Soc Am ; 139(5): 2403, 2016 05.
Article in English | MEDLINE | ID: mdl-27250136

ABSTRACT

This paper examines how masked thresholds depend on the masker bandwidth and center frequency when the masker has a smaller bandwidth than the signal. The signal bandwidth was equal to the equivalent rectangular bandwidth of the auditory filter and the masker bandwidth was 0.1, 0.35, or 0.6 times the signal bandwidth. The masker and signal were centered at the same frequency of 257, 697, 1538, 3142, or 6930 Hz. Masked thresholds were estimated using a two-interval two-alternative forced-choice paradigm and a three-down one-up adaptive staircase method. Masked thresholds increased with increasing masker bandwidth and were lowest for medium center frequencies.

6.
J Acoust Soc Am ; 139(5): 2482, 2016 05.
Article in English | MEDLINE | ID: mdl-27250144

ABSTRACT

Perceptual audio coders exploit the masking properties of the human auditory system to reduce the bit rate in audio recording and transmission systems; it is intended that the quantization noise is just masked by the audio signal. The effectiveness of the audio signal as a masker depends on whether it is tone-like or noise-like. The determination of this, both physically and perceptually, depends on the duration of the stimuli. To gather information that might improve the efficiency of perceptual coders, the duration required to distinguish between a narrowband noise and a tone was measured as a function of center frequency and noise bandwidth. In experiment 1, duration thresholds were measured for isolated noise and tone bursts. In experiment 2, duration thresholds were measured for tone and noise segments embedded within longer tone pulses. In both experiments, center frequencies were 345, 754, 1456, and 2658 Hz and bandwidths were 0.25, 0.5, and 1 times the equivalent rectangular bandwidth of the auditory filter at each center frequency. The duration thresholds decreased with increasing bandwidth and with increasing center frequency up to 1456 Hz. It is argued that the duration thresholds depended mainly on the detection of amplitude fluctuations in the noise bursts.


Subject(s)
Acoustic Stimulation/methods , Noise/adverse effects , Perceptual Masking , Pitch Discrimination , Adult , Audiometry, Pure-Tone , Auditory Threshold , Female , Humans , Male , Middle Aged , Psychoacoustics , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL