Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 266(Pt 1): 130990, 2024 May.
Article in English | MEDLINE | ID: mdl-38508553

ABSTRACT

This study investigated the effect of polymer blending of microbially produced poly[(R)-lactate-co-(R)-3-hydroxybutyrate] copolymers (LAHB) with poly(lactate) (PLA) on their mechanical, thermal, and biodegradable properties. Blending of high lactate (LA) content and high molecular weight LAHB significantly improved the tensile elongation of PLA up to more than 250 % at optimal LAHB composition of 20-30 wt%. Temperature-modulated differential scanning calorimetry and dynamic mechanical analysis revealed that PLA and LAHB were immiscible but interacted with each other, as indicated by the mutual plasticization effect. Detailed morphological characterization using scanning probe microscopy, small-angle X-ray scattering, and solid-state NMR confirmed that PLA and LAHB formed a two-phase structure with a characteristic length scale as small as 20 nm. Because of mixing in this order, the polymer blends were optically transparent. The biological oxygen demand test of the polymer blends in seawater indicated an enhancement of PLA biodegradation during biodegradation of the polymer blends.


Subject(s)
Polyesters , Polyesters/chemistry , Polyesters/metabolism , Polymers/chemistry , Polymers/metabolism , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Temperature , Molecular Weight , Biodegradation, Environmental
2.
Biomacromolecules ; 25(1): 444-454, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38135668

ABSTRACT

Polyhydroxyalkanoates (PHAs), aliphatic polyesters synthesized by microorganisms, have gained considerable attention as biodegradable plastics. Recently, α-carbon-methylated PHAs have been shown to exhibit several interesting properties that differ from those of conventional PHAs, such as their crystallization behavior and material properties. This study investigated α-carbon methylated (S)- and (R)-3-hydroxy-2-methylpropionate (3H2MP) as new repeating units. 3H2MP units were homopolymerized or copolymerized with (R)-3-hydroxybutyrate (3HB) by manipulating the culture conditions of recombinant Escherichia coli LSBJ. Consequently, PHAs with 3H2MP units ranging from 5 to 100 mol % were synthesized by external addition of (R)- and (S)-enantiomers or the racemic form of 3H2MPNa. The (S)-3H2MP precursor supplemented into the culture medium was almost directly polymerized into PHA while maintaining its chirality. Therefore, a highly isotactic P(3H2MP) (R:S = 1:99) was synthesized, which displayed a melting temperature of 114-119 °C and a relatively high enthalpy of fusion (68 J/g). In contrast, in cultures supplemented with (R)-3H2MP, the precursor was racemized and polymerized into PHA, resulting in the synthesis of the amorphous polymer atactic P(3H2MP) (R:S = 40:60). However, racemization was not observed at a low concentration of the (R)-3H2MP precursor, thereby synthesizing P(3HB-co-8 mol % 3H2MP) with 100% (R)-3H2MP units. The thermogravimetric analysis revealed that the thermal degradation temperatures at 5% weight loss of P(3H2MP)s occurred at approximately 313 °C, independent of tacticity, which is substantially higher than that of P(3HB) (257 °C). This study demonstrates a new concept for controlling the physical properties of biosynthesized PHA by manipulating the polymers' tacticity using 3H2MP units.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Polyesters/metabolism , Hydroxybutyrates , Temperature , Escherichia coli/genetics , Escherichia coli/metabolism , Carbon/metabolism
3.
Polymers (Basel) ; 15(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37896354

ABSTRACT

The lactate-based polyester poly[lactate (LA)-co-3-hydroxybutyrate (3HB)], termed LAHB, is a highly transparent and flexible bio-based polymeric material. There are many unknowns regarding its degradation process in riverine environments, especially the changes in bacterial flora that might result from its degradation and the identities of any LAHB-degrading bacteria. LAHB were immersed in the river water samples (A and B), and LAHB degradation was observed in terms of the weight change of the polymer and the microscopic changes on the polymer surfaces. A metagenomic analysis of microorganisms was conducted to determine the effect of LAHB degradation on the aquatic environment. The bacterial flora obtained from beta diversity analysis differed between the two river samples. The river A water sample showed the simultaneous degradation of LA and 3HB even though the copolymer was LA-enriched, suggesting preferable hydrolysis of the LA-enriched segments. In contrast, only 3HB degraded for the LAHB in the river B water sample. The linear discriminant analysis effect size (LEfSe) analysis revealed 14 bacteria that were significantly increased in the river A water sample during LAHB degradation, suggesting that these bacteria preferentially degraded and assimilated LA-clustering polymers. Our metagenomic analysis provides useful insights into the dynamic changes in microbial communities and LA-clustering polymer-degrading bacteria.

4.
Microb Cell Fact ; 22(1): 131, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468909

ABSTRACT

Escherichia coli is a useful platform for producing valuable materials through the implementation of synthetic gene(s) derived from other organisms. The production of lactate (LA)-based polyester poly[LA-co-3-hydroxybutyrate (3HB)] was carried out in E. coli using a set of five other species-derived genes: Pseudomonas sp. 61-3-derived phaC1STQK (for polymerization), Cupriavidus necator-derived phaAB (for 3HB-CoA generation), and Megasphaera elsdenii-derived pct (for LA-CoA generation) cloned into pTV118NpctphaC1ps(ST/QK)AB. Here, we aimed to optimize the expression level and timing of these genes to improve the production of P(LA-co-3HB) and to manipulate the LA fraction by replacing the promoters with various promoters in E. coli. Evaluation of the effects of 21 promoter replacement plasmids revealed that the phaC1STQK-AB operon is critical for the stationary phase for P(LA-co-3HB) production. Interestingly, the effects of the promoters depended on the composition of the medium. In glucose-supplemented LB medium, the dps promoter replacement plasmid resulted in the greatest effect, increasing the accumulation to 8.8 g/L and an LA fraction of 14.1 mol% of P(LA-co-3HB), compared to 2.7 g/L and 8.1 mol% with the original plasmid. In xylose-supplemented LB medium, the yliH promoter replacement plasmid resulted in the greatest effect, with production of 5.6 g/L and an LA fraction of 40.2 mol% compared to 3.6 g/L and 22.6 mol% with the original plasmid. These results suggest that the selection of an appropriate promoter for expression of the phaC1STQK-AB operon could improve the production and LA fraction of P(LA-co-3HB). Here, we propose that the selection of cell-growth phase-dependent promoters is a versatile biotechnological strategy for effective intracellular production of polymeric materials such as P(LA-co-3HB), in combination with the selection of sugar-based carbon sources.


Subject(s)
Escherichia coli , Lactic Acid , Escherichia coli/genetics , Escherichia coli/metabolism , Polyesters/metabolism , Hydroxybutyrates/metabolism
5.
Front Bioeng Biotechnol ; 11: 1114946, 2023.
Article in English | MEDLINE | ID: mdl-36896015

ABSTRACT

Polyhydroxyalkanoate (PHA) synthases (PhaCs) are key enzymes in PHA polymerization. PhaCs with broad substrate specificity are attractive for synthesizing structurally diverse PHAs. In the PHA family, 3-hydroxybutyrate (3HB)-based copolymers are industrially produced using Class I PhaCs and can be used as practical biodegradable thermoplastics. However, Class I PhaCs with broad substrate specificities are scarce, prompting our search for novel PhaCs. In this study, four new PhaCs from the bacteria Ferrimonas marina, Plesiomonas shigelloides, Shewanella pealeana, and Vibrio metschnikovii were selected via a homology search against the GenBank database, using the amino acid sequence of Aeromonas caviae PHA synthase (PhaCAc), a Class I enzyme with a wide range of substrate specificities, as a template. The four PhaCs were characterized in terms of their polymerization ability and substrate specificity, using Escherichia coli as a host for PHA production. All the new PhaCs were able to synthesize P(3HB) in E. coli with a high molecular weight, surpassing PhaCAc. The substrate specificity of PhaCs was evaluated by synthesizing 3HB-based copolymers with 3-hydroxyhexanoate, 3-hydroxy-4-methylvalerate, 3-hydroxy-2-methylbutyrate, and 3-hydroxypivalate monomers. Interestingly, PhaC from P. shigelloides (PhaCPs) exhibited relatively broad substrate specificity. PhaCPs was further engineered through site-directed mutagenesis, and the variant resulted in an enzyme with improved polymerization ability and substrate specificity.

6.
Bioengineering (Basel) ; 9(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35621506

ABSTRACT

A new polythioester (PTE), poly(3-mercapto-2-methylpropionate) [P(3M2MP)], and its copolymer with 3-hydroxybutyrate (3HB) were successfully biosynthesized from 3-mercapto-2-methylpropionic acid as a structurally-related precursor. This is the fourth PTE of biological origin and the first to be α-methylated. P(3M2MP) was biosynthesized using an engineered Escherichia coli LSBJ, which has a high molecular weight, amorphous structure, and elastomeric properties, reaching 2600% elongation at break. P(3HB-co-3M2MP) copolymers were synthesized by expressing 3HB-supplying enzymes. The copolymers were produced with high content in the cells and showed a high 3M2MP unit incorporation of up to 77.2 wt% and 54.8 mol%, respectively. As the 3M2MP fraction in the copolymer increased, the molecular weight decreased and the polymers became softer, more flexible, and less crystalline, with lower glass transition temperatures and higher elongations at break. The properties of this PTE were distinct from those of previously biosynthesized PTEs, indicating that the range of material properties can be further expanded by introducing α-methylated thioester monomers.

7.
Front Bioeng Biotechnol ; 10: 829134, 2022.
Article in English | MEDLINE | ID: mdl-35284416

ABSTRACT

Poly(3-hydroxybutyrate) [P(3HB)] is the most representative polyhydroxyalkanoate (PHA), which is a storage polyester for prokaryotic cells. P(3HB)-producing recombinant Escherichia coli secretes diethylene glycol (DEG)-terminated 3HB oligomers (3HBO-DEG) through a PHA synthase-mediated chain transfer and alcoholysis reactions with externally added DEG. The purpose of this study was to optimize the culture conditions for the secretory production of 3HBO-DEG with jar fermenters. First, the effects of culture conditions, such as agitation speed, culture temperature, culture pH, and medium composition on 3HBO-DEG production, were investigated in a batch culture using 250-ml mini jar fermenters. Based on the best culture conditions, a fed-batch culture was conducted by feeding glucose to further increase the 3HBO-DEG titer. Consequently, the optimized culture conditions were reproduced using a 2-L jar fermenter. This study successfully demonstrates a high titer of 3HBO-DEG, up to 34.8 g/L, by optimizing the culture conditions, showing the feasibility of a new synthetic strategy for PHA-based materials by combining secretory oligomer production and subsequent chemical reaction.

8.
Sci Rep ; 12(1): 3393, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35233015

ABSTRACT

Membrane vesicles (MVs) are formed in various microorganisms triggered by physiological and environmental phenomena. In this study, we have discovered that the biogenesis of MV took place in the recombinant cell of Escherichia coli BW25113 strain that intracellularly accumulates microbial polyester, polyhydroxybutyrate (PHB). This discovery was achieved as a trigger of foam formation during the microbial PHB fermentation. The purified MVs were existed as a mixture of outer MVs and outer/inner MVs, revealed by transmission electron microscopy. It should be noted that there was a good correlation between MV formation and PHB production level that can be finely controlled by varying glucose concentrations, suggesting the causal relationship in both supramolecules artificially produced in the microbial platform. Notably, the controllable secretion of MV was governed spatiotemporally through the morphological change of the E. coli cells caused by the PHB intracellular accumulation. Based on a hypothesis of PHB internal-pressure dependent envelope-disorder induced MV biogenesis, here we propose a new Polymer Intracellular Accumulation-triggered system for MV Production (designated "PIA-MVP") with presenting a mechanistic model for MV biogenesis. The PIA-MVP is a promising microbial platform that will provides us with a significance for further study focusing on biopolymer capsulation and cross-membrane transportation for different application purposes.


Subject(s)
Escherichia coli , Polymers , Escherichia coli/metabolism , Fermentation , Hydroxybutyrates , Microscopy, Electron, Transmission , Polyesters/metabolism
9.
Microorganisms ; 10(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35208913

ABSTRACT

The biodegradable polyester poly-(R)-3-hydroxybutyrate [P(3HB)] is synthesized by a polymerizing enzyme called polyhydroxyalkanoate (PHA) synthase and accumulates in a wide variety of bacterial cells. Recently, we demonstrated the secretory production of a (R)-3HB oligomer (3HBO), a low-molecular-weight P(3HB), by using recombinant Escherichia coli expressing PHA synthases. The 3HBO has potential value as an antibacterial substance and as a building block for various polymers. In this study, to construct an efficient 3HBO production system, the coexpression of molecular chaperones and a PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4) was examined. First, genes encoding enzymes related to 3HBO biosynthesis (phaRCYB4, phaA and phaB derived from Ralstonia eutropha H16) and two types of molecular chaperones (groEL, groES, and tig) were introduced into the E. coli strains BW25113 and BW25113ΔadhE. As a result, coexpression of the chaperones promoted the enzyme activity of PHA synthase (approximately 2-3-fold) and 3HBO production (approximately 2-fold). The expression assay of each chaperone and PHA synthase subunit (PhaRYB4 and PhaCYB4) indicated that the combination of the two chaperone systems (GroEL-GroES and TF) supported the folding of PhaRYB4 and PhaCYB4. These results suggest that the utilization of chaperone proteins is a valuable approach to enhance the formation of active PHA synthase and the productivity of 3HBO.

11.
J Gen Appl Microbiol ; 67(4): 134-141, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-33952784

ABSTRACT

With the aid of a chain transfer (CT) reaction, hydroxyalkanoate (HA) oligomers can be secreted by recombinant Escherichia coli carrying the gene encoding a lactate-polymerizing enzyme (PhaC1PsSTQK) in Luria-Bertani (LB) medium supplemented with a carbon source and CT agent. In this study, HA oligomers were produced through microbial secretion using a mineral-based medium instead of LB medium, and the impact of medium composition on HA oligomer secretion was investigated. The focused targets were medium composition and NaCl concentration related to osmotic conditions. It was observed that 4.21 g/L HA oligomer was secreted by recombinant E. coli in LB medium, but the amount secreted in the mineral-based modified R (MR) medium was negligible. However, when the MR medium was supplemented with 5 g/L yeast extract, 3.75 g/L HA oligomer was secreted. This can be accounted for by the enhanced expression and activity of PhaC1PsSTQK upon supplementation with growth-activated nutrients as supplementation with yeast extract also promoted cell growth and intracellular growth-associated polymer accumulation. Furthermore, upon adding 10 g/L NaCl to the yeast extract-supplemented MR medium, HA oligomer secretion increased to 6.86 g/L, implying that NaCl-induced osmotic pressure promotes HA oligomer secretion. These findings may facilitate the secretory production of HA oligomers using an inexpensive medium.


Subject(s)
Culture Media/analysis , Escherichia coli/metabolism , Polyhydroxyalkanoates/biosynthesis , Polymerization , Escherichia coli/chemistry , Microorganisms, Genetically-Modified/chemistry , Microorganisms, Genetically-Modified/metabolism
12.
Appl Microbiol Biotechnol ; 105(7): 2737-2745, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33738551

ABSTRACT

Microbial transglutaminase (MTG) has been used extensively in academic research and the food industry through cross-linking or posttranslational modification of proteins. In our previous paper, the activity-increased MTG mutants were obtained by means of rational mutagenesis and random mutagenesis coupled with the newly developed screening system. In addition, the improvement of heat resistance of MTG is needed to expand further its industrial applications. Here, a structure-based rational enzyme engineering approach was applied to improve the thermostability of MTG by introducing an artificial disulfide bridge. As a result of narrowing down candidates using a rational approach, we successfully engineered a disulfide bridge into the N-terminal region of MTG by substituting Thr-7 and Glu-58 with cysteine. The T7C/E58C mutant was observed to have a de novo disulfide bridge and showed an increased melting temperature (Tm value) of 4.3 °C with retained enzymatic activity. To address the benefit-gained reason, we focused on the Cß temperature factor of the amino-acid residues that might form a disulfide bridge in MTG. Introducing the disulfide bridge had no remarkable effect on the mutant aiming to stabilize the high temperature factor. On the other hand, the mutation was effective on the relatively stable region. The introduction of a disulfide bridge may therefore be effective to stabilize further the relatively stable part. This finding is considered to be useful for the rational design of mutants aiming at heat resistance of proteins.Key Points• Microbial transglutaminase (MTG) is used as a binder in the food industry.• MTG has the potential for use in the manufacturing of various commercial materials.• Enhanced thermostability was observed for the disulfide bridge mutant, T7C/G58C.


Subject(s)
Streptomyces , Transglutaminases , Disulfides , Enzyme Stability , Mutagenesis , Streptomyces/genetics , Streptomyces/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism
13.
Int J Biol Macromol ; 167: 1290-1296, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33202278

ABSTRACT

Poly((R)-3-hydroxybutyrate) (P(3HB)) is a polyester that is synthesized and accumulated in many prokaryotic cells. Recently, a new culture method for the secretion of the intracellularly synthesized (R)-3-hydroxybutyrate oligomer (3HBO) from recombinant Escherichia coli cells was developed. In this study, we attempted to produce microbial 3HBO capped with a diethylene glycol terminal (3HBO-DEG) as a macromonomer for polymeric materials. First, we prepared recombinant E. coli strains harboring genes encoding various polyhydroxyalkanoate (PHA) synthases (PhaC, PhaEC or PhaRC) that can incorporate chain transfer (CT) agents such as DEG into the polymer's terminal and generate CT end-capped oligomers. To this end, each strain was cultivated under DEG supplemental conditions, and the synthesis of 3HBO-DEG was confirmed. As a result, the highest secretory production of 3HBO-DEG was observed for the PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4). To evaluate the usability of the secreted 3HBO-DEG as a macromonomer, 3HBO-DEG was purified from the culture medium and polymerized with 4,4'-diphenylmethane diisocyanate as a spacer compound. Characterization of the polymeric products revealed that 3HBO-based polyurethane was successfully obtained and was a flexible and transparent noncrystalline polymer, unlike P(3HB). These results suggested that microbial 3HBO-DEG is a promising platform building block for synthesizing polyurethane and various other polymers.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Acyltransferases/genetics , Bacillus cereus/genetics , Escherichia coli/genetics , Ethylene Glycols/metabolism , Polyurethanes/chemistry , Polyurethanes/chemical synthesis , 3-Hydroxybutyric Acid/analysis , 3-Hydroxybutyric Acid/chemistry , Acyltransferases/metabolism , Chromatography, Gel , Culture Media , Escherichia coli/metabolism , Ethylene Glycols/chemistry , Isocyanates/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microorganisms, Genetically-Modified , Secretory Pathway/genetics , Spectroscopy, Fourier Transform Infrared , Thermography
14.
AMB Express ; 10(1): 155, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32845442

ABSTRACT

A polyhydroxyalkanoate (PHA) copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], was biosynthesized from biphenyl as the sole carbon source using Alcaligenes (currently Achromobacter) denitrificans A41. This strain is capable of degrading polychlorinated biphenyls (PCBs) and biphenyl. This proof-of-concept of the conversion of aromatic chemicals such as the environmental pollutant PCBs/biphenyl to eco-friendly products such as biodegradable polyester PHA was inspired by the uncovering of two genes encoding PHA synthases in the A. denitrificans A41 genome. When the carbon/nitrogen (C/N) ratio was set at 21, the cellular P(3HB-co-3HV) content in strain A41 reached its highest value of 10.1% of the cell dry weight (CDW). A two-step cultivation protocol improved the accumulation of P(3HB-co-3HV) by up to 26.2% of the CDW, consisting of 13.0 mol % 3HV when grown on minimum salt medium without nitrogen sources. The highest cellular content of P(3HB-co-3HV) (47.6% of the CDW) was obtained through the two-step cultivation of strain A41 on biphenyl as the sole carbon source. The purified copolymer had ultra-high molecular weight (weight-average molecular weight of 3.5 × 106), as revealed through gel-permeation chromatography. Based on the genomic information related to both polymer synthesis and biphenyl degradation, we finally proposed a metabolic pathway for the production of P(3HB-co-3HV) associated with the degradation of biphenyl by strain A41.

15.
Medicine (Baltimore) ; 99(4): e18693, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31977860

ABSTRACT

RATIONALE: Although capillary hemangiomas, common lesions involving the proliferation of small capillary vessels and a single layer of endothelial cells, can arise in any organ, they are rarely reported in the greater or lesser omentum. Here in, we report a case of capillary hemangioma arising from the lesser omentum in an adult with interesting diagnostic imaging findings, including changes in tumor size over time on computed tomography (CT), that was resected using laparoscopic surgery. To our knowledge, this is the first English report to describe a capillary hemangioma arising from the lesser omentum. PATIENT CONCERNS: A 63-year-old Japanese man received hemodialysis for chronic renal failure due to diabetic nephropathy, and a small, gradually enlarging tissue mass was found near the lesser curvature of the stomach on plain CT performed annually, without any associated complaints. Diagnostic imaging revealed an 18 × 15-mm tumor with a homogenous, highly enhanced effect in the early phase that was attenuated but prolonged in the delayed phase. Magnetic resonance imaging showed a mass with low signal intensity on T1-weighted imaging and relatively high signal intensity on T2-weighted imaging. DIAGNOSIS: The patient was diagnosed with capillary hemangioma arising from the lesser omentum according to the pathological and immunohistological findings. INTERVENTIONS: The patient underwent laparoscopy for excision of the tumor from the lesser omentum. OUTCOMES: At the 1 year follow-up, the patient had no recurrence of the tumor. LESSONS: We describe the first case worldwide of capillary hemangioma that was a true vascular tumor arising from the lesser omentum. Although capillary hemangioma arising from the lesser omentum is extremely rare, it should be considered in the differential diagnosis of patients presenting with a highly enhanced lesser omental tumor, and laparoscopy can be safely applied for the excision of this tumor.


Subject(s)
Hemangioma, Capillary/pathology , Omentum/pathology , Peritoneal Diseases/pathology , Hemangioma, Capillary/diagnostic imaging , Hemangioma, Capillary/surgery , Humans , Male , Middle Aged , Omentum/diagnostic imaging , Peritoneal Diseases/diagnostic imaging , Peritoneal Diseases/surgery , Tomography, X-Ray Computed
16.
Front Bioeng Biotechnol ; 8: 618077, 2020.
Article in English | MEDLINE | ID: mdl-33614605

ABSTRACT

Polyhydroxyalkanoates (PHAs) are naturally occurring biopolymers produced by microorganisms. PHAs have become attractive research biomaterials in the past few decades owing to their extensive potential industrial applications, especially as sustainable alternatives to the fossil fuel feedstock-derived products such as plastics. Among the biopolymers are the bioplastics and oligomers produced from the fermentation of renewable plant biomass. Bioplastics are intracellularly accumulated by microorganisms as carbon and energy reserves. The bioplastics, however, can also be produced through a biochemistry process that combines fermentative secretory production of monomers and/or oligomers and chemical synthesis to generate a repertoire of biopolymers. PHAs are particularly biodegradable and biocompatible, making them a part of today's commercial polymer industry. Their physicochemical properties that are similar to those of petrochemical-based plastics render them potential renewable plastic replacements. The design of efficient tractable processes using renewable biomass holds key to enhance their usage and adoption. In 2008, a lactate-polymerizing enzyme was developed to create new category of polyester, lactic acid (LA)-based polymer and related polymers. This review aims to introduce different strategies including metabolic and enzyme engineering to produce LA-based biopolymers and related oligomers that can act as precursors for catalytic synthesis of polylactic acid. As the cost of PHA production is prohibitive, the review emphasizes attempts to use the inexpensive plant biomass as substrates for LA-based polymer and oligomer production. Future prospects and challenges in LA-based polymer and oligomer production are also highlighted.

17.
Biotechnol J ; 14(12): e1900201, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31703147

ABSTRACT

The biodegradable polyester 3-hydroxybutyrate (3HB) polymer [P(3HB)] is intracellularly synthesized and accumulated in recombinant Escherichia coli. In this study, native polyhydroxyalkanoate (PHA) synthases are used to attempt to microbially secrete 3HB homo-oligomers (3HBOs), which are widely distributed in nature as physiologically active substances. High secretory production is observed, especially for the two PHA synthases from Aeromonas caviae and Bacillus cereus YB4. Surprisingly, an ethyl ester at the carboxy terminus (ethyl ester form) of 3HBOs is identified for most of the PHA synthases tested. Next, 3HBOs with a functional carboxyl group (carboxyl form of 3HBO) are obtained by using the alcohol dehydrogenase gene (adhE)-deficient mutant strain, suggesting that the endogenous ethanol produced in E. coli acts as a chain transfer (CT) agent in the generation of 3HBOs. Furthermore, an in vitro polymerization assay reveals that CT agents such as ethanol and free 3HB are involved in the generation of ethyl ester and carboxyl form of 3HBO, respectively. The microbial platform established herein allows the secretion of 3HBOs with desirable end structures by supplementation with various CT agents. The obtained 3HBOs and their end-capped forms may be used as physiologically active substances and building blocks for polymeric materials.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , 3-Hydroxybutyric Acid/chemistry , Acyltransferases/metabolism , Polyhydroxyalkanoates/biosynthesis , Polyhydroxyalkanoates/chemistry , 3-Hydroxybutyric Acid/isolation & purification , Acyltransferases/genetics , Aeromonas caviae/enzymology , Aeromonas caviae/genetics , Alcohol Dehydrogenase/genetics , Bacillus cereus/enzymology , Bacillus cereus/genetics , Biodegradation, Environmental , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Hydroxybutyrates/chemistry , Molecular Weight , Polyesters/chemistry , Polymerization , Recombinant Proteins , Recombination, Genetic , Time Factors
18.
J Biosci Bioeng ; 128(3): 302-306, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30987875

ABSTRACT

Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO) generates 2-phosphoglycolate (2PG) as one of the metabolites from the Calvin-Benson-Bassham (CBB) cycle. In this study, we focused on the fact that glycolate (GL) derived from 2PG can be incorporated into the bacterial polyhydroxyalkanoate (PHA) as the monomeric constituent by using the evolved PHA synthase (PhaC1PsSTQK). In this study, the function of the RuBisCO-mediated pathway for GL-based PHA synthesis was evaluated using Escherichia coli JW2946 with the deletion of glycolate oxidase gene (ΔglcD) as the model system. The genes encoding RuBisCO, phosphoribulokinase and 2PG phosphatase (PGPase) from several photosynthetic bacteria were introduced into E. coli, and the cells were grown on xylose as a sole carbon source. The functional expression of RuBisCO and relevant enzymes was confirmed based on the increases in the intracellular concentrations of RuBP and GL. Next, PHA biosynthetic genes encoding PhaC1PsSTQK, propionyl-CoA transferase and 3-hydroxybutyryl(3HB)-CoA-supplying enzymes were introduced. The cells accumulated poly(GL-co-3HB)s with GL fractions of 7.8-15.1 mol%. Among the tested RuBisCOs, Rhodosprium rubrum and Synechococcus elongatus PCC7942 enzymes were effective for P(GL-co-3HB) production as well as higher GL fraction. The heterologous expression of PGPase from Synechocystis sp. PCC6803 and R. rubrum increased GL fraction in the polymer. These results demonstrated that the RuBisCO-mediated pathway is potentially used to produce GL-based PHA in not only E. coli but also in photosynthetic organisms.


Subject(s)
Escherichia coli , Glycolates/metabolism , Polyhydroxyalkanoates/metabolism , Ribulose-Bisphosphate Carboxylase/physiology , Ribulosephosphates/metabolism , Carbon Dioxide/metabolism , Cloning, Molecular/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Metabolic Engineering/methods , Organisms, Genetically Modified , Photosynthesis/physiology , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
19.
J Gen Appl Microbiol ; 65(4): 204-208, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-30700650

ABSTRACT

For enhancing the lactate (LA) fraction of poly(lactate-co-3-hydroxybutyrate)s [P(LA-co-3HB)s], an exogenous D-lactate dehydrogenase gene (ldhD) was introduced into Escherichia coli. Recombinant strains of E. coli DH5α, LS5218, and XL1-Blue harboring the ldhD gene from Lactobacillus acetotolerans HT, together with polyhydroxyalkanoate (PHA)-biosynthetic genes containing a lactate-polymerizing enzyme (modified PHA synthase) gene, accumulated the P(LA-co-3HB) copolymer from glucose under microaerobic conditions (100 strokes/min). The LA fraction of copolymers synthesized in the strains of DH5α, LS5218, and XL1-Blue were 19.8, 15.7, and 28.5 mol%, respectively, which were higher than those of the strains without the ldhD gene (<6.7 mol% of LA units). Introduction of the exogenous ldhD gene into E. coli strains resulted in an enhanced LA fraction in P(LA-co-3HB)s.


Subject(s)
Escherichia coli/metabolism , Lactate Dehydrogenases/genetics , Lactic Acid/biosynthesis , Lactobacillus/genetics , Polyesters/analysis , Glucose , Molecular Weight , Polyesters/metabolism , Polyhydroxyalkanoates/genetics
20.
J Biosci Bioeng ; 128(2): 191-197, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30799088

ABSTRACT

Novel lactate (LA)-based polymers containing medium-chain-length 3-hydroxyalkanoates (MCL-3HA) were produced in fadR-deficient Escherichia coli strains from glucose as the sole carbon source. The genes encoding LA and 3-hydroxybutyrate (3HB) monomers supplying enzymes [propionyl-CoA transferase (PCT), d-lactate dehydrogenase (D-LDH), ß-ketothiolase (PhaA), and NADPH-dependent acetoacetyl-CoA reductase (PhaB)], MCL-3HA monomers supplying enzymes [(R)-3-hydroxyacyl-ACP thioesterase (PhaG) and (R)-3-hydroxyacyl (3HA)-CoA ligase] via fatty acid biosynthesis pathway, and modified polyhydroxyalkanoate (PHA) synthase [PhaC1(STQK)] of Pseudomonas sp. 61-3 were introduced into E. coli LS5218. This resulted in the synthesis of a novel LA-based copolymer, P(LA-co-3HB-co-3HA). 1H-nuclear magnetic resonance (NMR) analysis revealed the composition of P(LA-co-3HB-co-3HA) to be 19.7 mol% LA (C3), 74.9 mol% 3HB (C4), and 5.4 mol% MCL-3HA units of C8 and C10. Furthermore, the recombinant E. coli CAG18497 strain carrying these genes, excluding the phaAB genes, accumulated P(92.0% LA-co-3HA) with a novel monomer composition containing C3, C8, C10, and C12. 13C-NMR analysis showed the existence of LA-3HA sequence in the polymer. The solvent cast film of P(92.0% LA-co-3HA) exhibited transparency similar to poly(lactic acid).


Subject(s)
DNA, Recombinant/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Glucose/metabolism , Lactic Acid/chemistry , Polymers/chemistry , Polymers/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Pseudomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...