Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Molecules ; 28(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005251

ABSTRACT

The design of a simple approach enabling the detection of bisphenol A (BPA) in water samples without the need for large amounts of solvents is of utmost importance. This paper reports a simple method for the separation, concentration, and quantification of BPA in water samples using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) after its microextraction into an in situ formed organic ion-associate (IA) liquid phase (LP). Novel IA phase components without conjugated double bonds, such as benzene rings, were investigated. Ethylhexyloxypropylamine hydrochloride and sodium dodecyl sulfate solutions were added to the water samples to form IAs. The aqueous phase and ion-associate liquid phase (IALP) were separated by centrifugation. The aqueous phase was removed, and the liquid phase was recovered and measured using HPLC-FLD or HPLC-electrochemical detection (ECD). The concentrated phase (IALP) had a relatively low viscosity and could be injected directly into the chromatograph without dissolving it in organic solvents. The detection limits for BPA by HPLC-FLD and HPLC-ECD were 0.009 and 0.3 µg L-1, respectively.

2.
Front Psychol ; 14: 1237984, 2023.
Article in English | MEDLINE | ID: mdl-37731885

ABSTRACT

Human consciousness is characterized by constant transitions in time. On the other hand, what is consciously experienced always possesses the temporal feature of "now." In consciousness, "now" constantly holds different contents, yet it remains "now" no matter how far it goes. This duality is thematized in Husserlian phenomenology as "the standing-streaming now." Although this phrase appears contradictory in everyday language, it has a structure that can be clearly understood and formalized. In this paper, we show that this structure can be described as a monoid in category theory. Furthermore, monoids can be transformed into the coslice category, which corresponds to the way of perceiving present moments as juxtaposed in succession. The seemingly contradictory nature of the "now" as both flowing and standing can be precisely structured and comprehended through the monoid, while the perspective of the "now" as discrete points on a timeline can be effectively formalized using the coslice category. This framework helps us more precisely understand the differences between ordinary consciousness and meditative consciousness, specifically the experience of the "eternal now." We illustrate how the meditative states of consciousness presented in the early Buddhist scriptures (Pali Canon) and Dogen's Shobogenzo remarkably reflect a monoid structure.

3.
Anal Sci ; 39(6): 857-865, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36795319

ABSTRACT

A highly sensitive and simple solid-phase colorimetry for Cr(VI) was proposed. It was based on the ion-pair solid-phase extraction of Cr-diphenylcarbazide (DPC) complex with sedimentable dispersed particulates. The concentration of Cr(VI) was measured from the color tones obtained by image analysis of the photo of sediment. Various conditions, e.g., material and amounts of adsorbent particulates, chemical properties and concentration of counter ions, and pH, were optimized for the formation and quantitative extraction of the complex. In the recommended procedure, 1 mL of sample was put into a 1.5 mL microtube where powder form adsorbent and reagents, i.e., XAD-7HP particles, DPC, sodium dodecyl sulfate, amido sulfuric acid, and sodium chloride had been packed. The analytical operation was completed within 5 min by gently shaking the microtube and allowing it to stand until enough amounts of particulates were deposited to take a picture. Chromium (VI) up to 2.0 ppm was determined, and the detection limit was 0.0034 ppm. The sensitivity was enough to determine Cr(VI) at lower concentrations than the water quality of standard (0.02 ppm). This method was successfully applied to the analysis of simulated industrial wastewater samples. The stoichiometry of the extracted chemical species was also investigated by applying the same equilibrium model as the ion-pair solvent extraction.

4.
Anal Bioanal Chem ; 414(29-30): 8389-8400, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36260127

ABSTRACT

A novel simple and functional colorimetric methodology for on-site environmental water analysis was proposed. This method combines coloration of the analyte and extraction of the colored species on dispersed particulates during their sedimentation in the same container. The whole analysis can be performed within 15 min by comprising the addition of 1 mL of sample solution into a 1.5-mL microtube containing the powders of coloring reagents and the sedimentable fine particulates as an adsorbent. The analyte is determined by comparing the sediment color with the standard color by visual inspection or the color information of the photo image. The potential of this methodology was demonstrated through developing colorimetry for Fe2+ with o-phenanthroline, NO2- by azo-dye formation, HCHO by the MBTH method, and PO43- by the 4-aminoantipyrine method based on the enzyme reactions. The material, size, amount of the adsorbent particles, and other conditions were optimized for each analytes. The advantages of the methodology were as follows: high sensitivity, easy controllability of the sensitivity over the wide range by the amount, size, and material of the particulates, lower interference from the colored matrix components due to obtaining the color data from not the aqueous phase but the sedimented particulates, and acceleration of the color development rate by the particulates as seen in NO2- determination as consequence shorten the operation time. A simple device equipped with twin cells was proposed for on-site analysis which contains two successive different coloring operations. The developed methods were successfully applied to the environmental water samples with the good agreement of the results with those by the usual instrumental methods.


Subject(s)
Colorimetry , Nitrogen Dioxide , Colorimetry/methods , Solid Phase Extraction/methods , Water , Azo Compounds
5.
Sci Rep ; 12(1): 2859, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190582

ABSTRACT

Social cognition has received much attention in fields such as neuroscience, psychology, cognitive science, and philosophy. Theory-theory (TT) and simulation theory (ST) provide the dominant theoretical frameworks for research on social cognition. However, neither theory addresses the matter of how the concepts of "self" and "other" are acquired through the development of human and nonhuman agents. Here, we show that the internal representations of "self" and "other" can be developed in an artificial agent only through the simple predictive learning achieved by deep neural networks with the superposition mechanism we herein propose. That is, social cognition can be achieved without a pre-given (or innate) framework of self and other; this is not assumed (or is at least unclear) in TT and ST. We demonstrate that the agent with the proposed model can acquire basic abilities of social cognition such as shared spatial representations of self and other, perspective-taking, and mirror-neuron-like activities of the agent's neural network. The result indicates that the superposition mechanism we propose is a necessary condition for the development of the concepts of "self" and "other" and, hence, for the development of social cognition in general.


Subject(s)
Neural Networks, Computer , Self Concept , Social Cognition , Cognitive Science , Humans , Learning , Mirror Neurons , Neurosciences
6.
Biomedicines ; 9(4)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801765

ABSTRACT

Psychotherapy is a comprehensive biological treatment modifying complex underlying cognitive, emotional, behavioral, and regulatory responses in the brain, leading patients with mental illness to a new interpretation of the sense of self and others. Psychotherapy is an art of science integrated with psychology and/or philosophy. Neurological sciences study the neurological basis of cognition, memory, and behavior as well as the impact of neurological damage and disease on these functions, and their treatment. Both psychotherapy and neurological sciences deal with the brain; nevertheless, they continue to stay polarized. Existential phenomenological psychotherapy (EPP) has been in the forefront of meaning-centered counseling for almost a century. The phenomenological approach in psychotherapy originated in the works of Martin Heidegger, Ludwig Binswanger, Medard Boss, and Viktor Frankl, and it has been committed to accounting for the existential possibilities and limitations of one's life. EPP provides philosophically rich interpretations and empowers counseling techniques to assist mentally suffering individuals by finding meaning and purpose to life. The approach has proven to be effective in treating mood and anxiety disorders. This narrative review article demonstrates the development of EPP, the therapeutic methodology, evidence-based accounts of its curative techniques, current understanding of mood and anxiety disorders in neurological sciences, and a possible converging path to translate and integrate meaning-centered psychotherapy and neuroscience, concluding that the EPP may potentially play a synergistic role with the currently prevailing medication-based approaches for the treatment of mood and anxiety disorders.

7.
Environ Sci Pollut Res Int ; 28(11): 13425-13438, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33179191

ABSTRACT

Formaldehyde (HCHO) is a naturally occurring compound found in ambient air which can induce cancer and sick-building syndrome. It plays an important role in the formation of OH radicals, which are connected to the formation of various airborne chemicals. Herein, we present a simple modeling for the simulation of diurnal variations in the HCHO concentration of ambient air. This was achieved using data collected during different seasons from November 2015 to March 2017 at a suburban location in Toyama City (Japan), where non-methane hydrocarbon (NMHC) levels were low at sub carbon ppm (ppmC) order. The modeling was based on the assumption that photochemical reactions of methane were the major factor of secondary HCHO formation. The model took into account the production and decomposition of HCHO by photochemical reactions as well as its loss due to other reactions such as dry deposition. Accordingly, the model's equation contained terms for solar radiation, temperature, and methane concentration. The results predicted using the model showed good agreement with the experimental data observed on fine days, i.e., except rainy, foggy, and heavily cloudy days. The relationships between HCHO concentration and solar radiation/temperature on different days as well as the seasonal variation of HCHO concentration were also interpreted by the proposed model. This study contributes to the evaluation of the pollution levels of formaldehyde. Moreover, the model may be used to demonstrate the impact of increasing methane levels, with regard to global warming and the background levels of HCHO in the atmosphere.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Cities , Environmental Monitoring , Formaldehyde/analysis , Japan
8.
Anal Sci ; 36(5): 595-599, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32201409

ABSTRACT

We developed an ion-associate phase (IAP)-extraction/acid back-extraction system for the preconcentration and atomic spectrometric determination of lithium trace amounts in water. The chelating reagent for lithium also works as a constituent of the extraction phase. The lithium in a 10 mL sample solution was converted through a chelate complex reaction with 2,2,6,6-tetramethyl-3,5-heptanedione (HDPM). The addition of a benzyldimethyltetradecylammonium ion caused the formation of IAP suspension in the solution. Centrifugation of the solution led to the isolation of a liquid organic phase and the lithium complex was extracted as the upper phase from the centrifuge tube. After the aqueous phase was removed, lithium was back-extracted with a 400 µL nitric acid solution from the IAP. The acid phase was measured using liquid-electrode-plasma atomic-emission-spectrometry (LEP-AES) or graphite-furnace atomic-absorption spectroscopy (GF-AAS). The detection limits were 0.02 mg/L for LEP-AES and 0.02 µg/L for GF-AAS. This system was applied to the determination of environmental water. The HDPM in the organic phase was reusable.

9.
Anal Sci ; 34(12): 1445-1448, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30197383

ABSTRACT

Micro-organic ion-associate phase (IAP) extraction was combined with a micro-volume back-extraction (MVBE) to reduce coexisting components and viscosity in the concentrates. Heavy metals were converted into a complex with 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol in a 40-mL sample solution, and were extracted into ion associates. After centrifugation and discarding the aqueous phase, trace metals were stripped from IAP into a nitric acid solution, followed by GF-AAS determination. Only one vessel was required for 400-fold enrichment. The detection limits (3σb) for Cd, Ni, and Pb were 0.6, 3.7, and 0.8 ng/L, respectively. This method was applied in recovery tests in seawater.

10.
Neurosci Res ; 107: 1-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26748074

ABSTRACT

One of the most mysterious phenomena in science is the nature of conscious experience. Due to its subjective nature, a reductionist approach is having a hard time in addressing some fundamental questions about consciousness. These questions are squarely and quantitatively tackled by a recently developed theoretical framework, called integrated information theory (IIT) of consciousness. In particular, IIT proposes that a maximally irreducible conceptual structure (MICS) is identical to conscious experience. However, there has been no principled way to assess the claimed identity. Here, we propose to apply a mathematical formalism, category theory, to assess the proposed identity and suggest that it is important to consider if there exists a proper translation between the domain of conscious experience and that of the MICS. If such translation exists, we postulate that questions in one domain can be answered in the other domain; very difficult questions in the domain of consciousness can be resolved in the domain of mathematics. We claim that it is possible to empirically test if such a functor exists, by using a combination of neuroscientific and computational approaches. Our general, principled and empirical framework allows us to assess the relationship between the domain of consciousness and the domain of mathematical structures, including those suggested by IIT.


Subject(s)
Consciousness , Information Theory , Mathematical Concepts , Animals , Humans
11.
Anal Sci ; 31(3): 177-83, 2015.
Article in English | MEDLINE | ID: mdl-25765379

ABSTRACT

This study proposes an optical fiber sensor for calcium carbonate (CaCO3) scale formation in water. The sensor is easily fabricated by removing the cladding of a multimode fiber to expose the core towards the surrounding medium in order to detect refractive index change. A variation of the transmittance response from the high refractive index of CaCO3 which precipitated on the fiber core surface was observed. The proposed setup can be used to analyze the transmittance response over wide range of wavelength using white light as a source and also a spectroscopy detector. The curve of the transmittance percentage over time showed that a fiber core with 200 µm has higher sensitivity as compared to a fiber core with 400 µm. The findings from this study showed that the sensor detection region at near infrared (NIR) wavelengths showed better sensitivity than visible light (VIS) wavelengths. Field tests were conducted using natural geothermal water at Matsushiro, Japan in order to verify the performance of the proposed sensor. The optical response was successfully evaluated and the analytical results confirmed the capability of monitoring scale formation in a geothermal water environment.

12.
Anal Chem ; 87(4): 2375-82, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25607737

ABSTRACT

Herein, we present a novel spectroelectrochemical fiber-optic sensor that combines electrochemistry, spectroscopy, and electrostatic adsorption in three modes of selectivity. The proposed sensor is simple and consists of a gold mesh cover on a multimode fiber optic that uses attenuated total reflection as the optical detection mode. The sensing is based on changes in the attenuation of the light that passes through the fiber-optic core accompanying the electrochemical oxidation-reduction of an analyte at the electrode. Methylene blue and ferrocyanide were used as model analytes to evaluate the performance of the proposed sensor. The optical transmission changes generated by electrochemical manipulation showed a good linear relationship with the concentration and the limits of detection (3σ) for methylene blue and ferrocyanide at 2.0 × 10(-7) and 1.6 × 10(-3) M, respectively. The sensor responses were successfully enhanced with an additional level of selectivity via an electrostatically adsorbed, self-assembled monolayer (SAM), which consisted of a silane coupling layer, a polyanion, and a polycation. The improvement observed in the sensitivity of a SAM-modified fiber-optic sensor was rather encouraging. The optimized sensor had detection limits (3σ) of 8.3 × 10(-9) M for methylene blue and 7.1 × 10(-4) M for ferrocyanide. The developed sensor was successfully applied to the detection of ferrocyanide in simulated nuclear waste.


Subject(s)
Electrochemical Techniques , Ferrocyanides/analysis , Fiber Optic Technology , Methylene Blue/analysis , Electrodes , Radioactive Waste/analysis
13.
Springerplus ; 2: 422, 2013.
Article in English | MEDLINE | ID: mdl-24024106

ABSTRACT

A higher enrichment of organic pollutant, di(2-ethylhexyl) phthalate (DEHP) was found in estuary of Oyabe River and Jinzu River, Japan. Based on this, the distribution of DEHP between water and bed sediment was investigated as a model of organic pollutant through both the field investigation and laboratory experiment. The laboratory experiment was performed to examine the effect of seawater, organic matter in sediment and hydrophobicity (log K ow ) of organic pollutants. The result showed that salting-out effect due to the high salinity in seawater and organic matter in sediment contributed towards the increasing of DEHP distribution between water and sediment. Furthermore, the hydrophobicity of organic pollutant also enhances the distribution between water and sediment to a higher magnitude in the presence of seawater.

14.
Anal Sci ; 29(1): 67-72, 2013.
Article in English | MEDLINE | ID: mdl-23303087

ABSTRACT

An improved molybdenum blue spectrophotometry using a soluble membrane filter and CaCO(3)-column was proposed for determining arsenic in drinking water supplied from ground water in the presence of phosphate. A 100 mL sample solution containing 0.5 - 10 µg arsenic was passed through a CaCO(3)-column to remove phosphate, arsenate (As(V)). Arsenite (As(III)) which was not retained on the column was oxidized to As(V). As(V) was converted into a heteropolymolybdenum blue anion. The blue anion was collected on a membrane filter as an ion-associate with n-dodecyltrimethylammonium ion by filtration. The filter was dissolved in 2 mL of 2-methoxyethanol. The absorbance of the solution was measured at 810 nm against a reagent blank. Total inorganic arsenic was determined by reducing As(V) to As(III) before the column treatment. The RSDs for 10 µg L(-1) of As(III) and As(V) were 2.9%. Phosphate 0.2 mg L(-1) (as P) and iron 0.1 mg L(-1) did not interfere with the determination of 10 µg L(-1) arsenic. The proposed method was successfully applied to ground waters.

15.
Sensors (Basel) ; 12(12): 17414-32, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23242275

ABSTRACT

The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the ß-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg∙L-1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP and 1-NP were decreased substantially with the presence of 1 g∙L-1 sediment. This was not observed in the case of genotoxins with a low log K(ow) value.


Subject(s)
DNA Damage/drug effects , Mutagens/pharmacology , Salmonella typhimurium/enzymology , beta-Galactosidase/genetics , 4-Nitroquinoline-1-oxide/pharmacology , Benzoquinones/pharmacology , Benzoquinones/toxicity , Furans/pharmacology , Mutagenicity Tests , Pyrenes , SOS Response, Genetics , Salmonella typhimurium/drug effects
16.
Anal Sci ; 28(1): 77, 2012.
Article in English | MEDLINE | ID: mdl-22232230

ABSTRACT

The paramagnetic microbead-based electrochemical binding assay was demonstrated for detecting two kinds of protein simultaneously. The principle of this assay is based on the sequestration electrochemistry. The protein binding electroactive magnetic microbeads which are conjugated with an electroactive compound and a ligand to bind specifically with a target protein were prepared. The avidin-biotin and soybean agglutinin (SBA)-galactosamine were chosen as model protein-ligand systems. The avidin binding electroactive magnetic microbead (ABEMMb) and SBA binding electroactive magnetic microbead (SBEMMb) are constructed by biotin/thionine and galactosamine/ferrocene modified on paramagnetic microbeads. The voltammetric response for these functionalized microbeads was measured by the Nd-Fe-B magnet-incorporating carbon paste rotating disk electrode. The measurements were performed in a microliter droplet using a rotating disk electrode system. Avidin and SBA were simultaneously detected by the decrease in the current responses from the reduction of ABEMMb and SBEMMb that was caused by the binding with target proteins. The limits of detection for avidin and SBA were 4 × 10(-10) and 2 × 10(-10) M, respectively.


Subject(s)
Avidin/analysis , Electrochemical Techniques , Galactosamine/analysis , Magnetic Phenomena , Microspheres , Plant Lectins/analysis , Soybean Proteins/analysis , Protein Binding
17.
Int J Environ Res Public Health ; 8(5): 1655-70, 2011 05.
Article in English | MEDLINE | ID: mdl-21655143

ABSTRACT

The dissolved organic matter (DOM) is one of the important factors for controlling water quality. The behavior and constitutions of DOM is related to the risk of human health because it is able to directly or indirectly affect the behavior, speciation and toxicity of various environmental pollutants. However, it is not easy to know the contents of DOM components without using various complicated and time consuming analytical methods because DOM is a complex mixture and usually exists at low concentration. Here, we describe the fluorescence properties of DOM components in water samples collected from four rivers in Toyama, Japan by means of the three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. In order to evaluate the alterations of DOM components in each of the river during the flow from upstream to downstream, the patterns of relative fluorescence intensity (RFI) at six peaks which are originated from fluorophores including humic-like and protein-like components were investigated. The changes in the patterns of RFI values at each of the peak and the concentration of dissolved organic carbon (DOC) for each river water sample were discussed in connection with the differences of land use managements and basic water quality parameters, such as pH, EC, turbidity, Fe(3+), T-N, NO(3)-N, T-P, PO(4)-P, chlorophyll a, DOC and N/P ratio. The DOC concentrations in the water samples collected from these rivers were relatively low (0.63-1.16 mg/L). Two main peaks which have a strong RFI value expressed a positive correlation with the DOC concentration (r = 0.557, 0.535). However, the correlations between the RFI values for other four peaks and the DOC concentration were below 0.287. The alterations of DOM components during the flow of a river from upstream to downstream were investigated from the changes in the patterns of RFI values for six fluorescent peaks. It was clarified that the great increase of RFI values in peak A and peak T from river water located in urban area showed high concentration of PO(4)-P and Fe(3+), and low N/P ratio due to the high biological activities. The values of fluorescence index (FIX) and biological index (BIX) were as high as 1.60 and 0.72, respectively.


Subject(s)
Organic Chemicals/analysis , Rivers/chemistry , Spectrometry, Fluorescence/methods , Fluorescence , Japan
18.
Analyst ; 136(11): 2373-8, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21491033

ABSTRACT

A simple electrochemical binding assay for cholera toxin (CT) was developed using lactose labeled with daunomycin as an electroactive compound. The labeled lactose (LL) was determined with high sensitivity by adsorptive stripping voltammetry (AdSV). The electrochemical behaviors of LL at glassy carbon (GC), plastic formed carbon (PFC) and carbon nanotubes paste (CNTP) electrode were investigated. The CNTP electrode showed the greatest accumulation capacity for LL. The assay for CT based on the sequestration electrochemistry was demonstrated. The binding event of the LL to CT was detected by the decrease in the electrochemical response of daunomycin as an electroactive label without a separation process to remove the free LL from the one bound with CT before any measurements can be made. The detection limit of the CT assay using the CNTP electrode was 0.5 nM (42 ng mL(-1)).


Subject(s)
Cholera Toxin/chemistry , Electrochemical Techniques/methods , Lactose/chemistry , Carbon/chemistry , Cholera Toxin/metabolism , Daunorubicin/chemistry , Electrodes , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Protein Binding
19.
Anal Sci ; 24(11): 1455-9, 2008.
Article in English | MEDLINE | ID: mdl-18997375

ABSTRACT

A simple and sensitive spectrophotometry for formaldehyde in water by membrane solubilization technique was proposed. Formaldehyde was converted into a blue cationic dye with 3-methyl-2-benzothiazolinone hydrazone, and the dye was retained on a membrane filter as an ion-associate with tetraphenylborate anion. The filter retaining the blue dye was dissolved in 2-methoxyethanol containing sulfuric acid, and the absorbance of the solution was measured at 670 nm against the reagent blank. The formaldehyde from 0.007 to 0.2 mg L(-1) was determined with an RSD of less than 5%, and the detection limit was 0.002 mg L(-1). The proposed method was very simple and rapid. Twenty minutes was sufficient for the entire analytical procedure. When the method was applied to rainwater, the analytical results were in good agreement with those obtained by GC/MS.


Subject(s)
Formaldehyde/analysis , Spectrum Analysis/methods , Water Pollutants, Chemical/analysis , Benzothiazoles , Coloring Agents , Fresh Water/analysis , Hydrazones , Membranes, Artificial , Solubility
20.
Anal Sci ; 24(7): 925-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18614838

ABSTRACT

The formation of a liquid organic ion associate in an aqueous sample was applied to the concentration and determination of cadmium in environmental water samples. Cadmium was converted into a complex with 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol (5-Br-PAPS) in a 40-mL sample solution, and was extracted into a liquid ion associate of phenolsulfonate and benzethonium during phase formation. More than 400-fold enrichment was easily attained by this technique, because the volume of the liquid organic phase formed was very small, ca. 2 microL. After dilution of the organic phase with a small volume of 2-methoxyethanol, the cadmium in the solution was determined by GF-AAS. The detection limit was 0.09 ng/L (3sigma(b)). This method was applied to the determination of cadmium in river water and seawater.

SELECTION OF CITATIONS
SEARCH DETAIL