Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 196: 180-193, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-34813782

ABSTRACT

In this study, we report the development of physically cross-linked hydroxyethyl cellulose grafted polyacrylic acid-co-polyacrylamide/silver nanocomposite [Ag@HEC-g-P(AA-co-AM)-Fe3+] possesses excellent antimicrobial and enhanced MB adsorption. A green in-situ reduction process was used to prepare silver nanoparticles. UV-Vis spectroscopy, TEM, ATR-IR, XRD, SEM-EDS were used to analyze the green produced silver nanoparticles and Ag@HEC-g-P(AA-co-AM)-Fe3+. The swelling ratio of Ag@HEC-g-P(AA-co-AM)-Fe3+ is dependent on AgNPs content and pH. The swelling kinetics fitted with Pseudo-second order. The cumulative release#% of AgNPs was 29.63 ± 1.7%, respectively up to 10 h and its kinetics obey Korsmeyer-Peppas model. The grafting to HEC and incorporation of AgNPs into HEC-g-P(AA-co-AM)-Fe3+ enhances the thermal stabilities and increases total activation energies from 19,122.2 to 66,287.1 KJ mol. Ag@HEC-g-P(AA-co-AM)-Fe3+ has powerful antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus leutus, Staphyllococus aureus. The maximum adsorption capacity of MB was 133.38 ± 1.25 mg/g at nanocomposite concentration (300 mg/L), pH (9.0), and MB concentration (5 mg/L). To anticipate the adsorption mechanism, Pseudo-first and second-order models, as well as three isotherm models (Langmuir, Freundlich, and Temkin) were used to model adsorption kinetics. The nonlinear Langmuir models and second-order kinetics were the most appropriate.


Subject(s)
Acrylamides/chemistry , Cellulose/analogs & derivatives , Iron , Metal Nanoparticles/chemistry , Methylene Blue/chemistry , Silver , Adsorption , Cellulose/chemistry , Chemical Phenomena , Spectrum Analysis , Thermogravimetry , Water Purification
2.
Int J Biol Macromol ; 193(Pt B): 1859-1870, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34774588

ABSTRACT

The chemically crosslinked silver titanium dioxide embedded Arabic gum grafted polyacrylamide-polyacrylonitrile nanocomposite AgTiO2@AG-g-P(AM-co-AN)was successfully synthesized and investigated by ATR-IR, XRD, and SEM. The synthesis optimization parameters of AG-g-P(AM-co-AN)were 5% AG, 1/0.5 AM/AN monomer molar ratio, 0.5 mg MBA cross-linker, and AgTiO2 content (1%) gives AgTiO2@AG-g-P(AM-co-AN) nanocomposite. While adsorption studies for AgTiO2@AG-g-P(AM-co-AN) exhabited the maximum adsorption capacity (104.50 ± 3.02 mg/g) at concentration (150 mg/L), MB concentration (15 mg/L) and pH (8.0). The adsorption nonlinear kinetics models were used. Pseudo-second order governs the adsorption process, and the Langmuir model is more suited than Freundlich and Temkin.


Subject(s)
Gum Arabic/chemistry , Hydrogels/chemistry , Methylene Blue/chemistry , Nanocomposites/chemistry , Silver/chemistry , Titanium/chemistry , Water Purification
3.
Int J Biol Macromol ; 161: 1247-1260, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32553963

ABSTRACT

The main aim of this research work was to develop controlled drug delivery systems based on nanotechnology. Chitosan nanoparticles (CSNPs) were selected as a nanocarrier for the selected antibiotic drugs tetracycline, gentamycin and ciprofloxacin. CSNPs were prepared from chitosan solution by using tripolyphosphate (TPP) via ionic gelation method. Then the prepared high performance CSNPs were loaded with three different antibiotics to form nanocomposite from antibiotic loaded chitosan nanoparticles. Then the prepared nanocomposite used as superior antibacterial materials with minimum toxicity. Samples of cotton (100%) and (50:50) cotton/polyester blended fabrics were treated with different concentrations of this composite to impart antibacterial activity. Results showed that the treated fabrics with chitosan nanoparticles and its nanocomposite with different antibiotics were inhibited the growth of both Gram-positive and Gram-negative bacteria. The Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM) analysis exposed the embedding of chitosan nanoparticles into fabrics and their antibiotics loaded.


Subject(s)
Chitosan/chemistry , Ciprofloxacin/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Gentamicins/administration & dosage , Nanoparticles/chemistry , Tetracycline/administration & dosage , Textiles , Cellulose/chemistry , Cotton Fiber , Microbial Sensitivity Tests , Molecular Structure , Nanoparticles/ultrastructure , Spectrum Analysis , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...