Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 337: 122143, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710552

ABSTRACT

Cyclodextrins (CDs) are essential in the pharmaceutical industry and have long been used as food and pharmaceutical additives. CD-based interlocked molecules, such as rotaxanes, polyrotaxanes, catenanes, and polycatenanes, have been synthesized and have attracted considerable attention in supramolecular chemistry. Among them, CD polyrotaxanes have been employed as slide-ring materials and biomaterials. CD polycatenanes are new materials; therefore, to date, no examples of applied research on CD polycatenanes have been reported. Consequently, we expect that applied research on CD polycatenanes will accelerate in the future. This review article summarizes the syntheses and structural analyses of CD polyrotaxanes and polycatenanes to facilitate their applications in the pharmaceutical industry. We believe that this review will promote further research on CD-based interlocked molecules.


Subject(s)
Cyclodextrins , Poloxamer , Rotaxanes , Rotaxanes/chemistry , Rotaxanes/chemical synthesis , Cyclodextrins/chemistry , Cyclodextrins/chemical synthesis , Catenanes/chemistry , Catenanes/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis
2.
Mater Today Bio ; 20: 100690, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37441133

ABSTRACT

Various biopharmaceuticals, such as nucleic acids, proteins, and genome-editing molecules, have been developed. Generally, carriers are prepared for each biopharmaceutical to deliver it intracellularly; thus, the applications of individual carriers are limited. Moreover, the development of carriers is laborious and expensive. Therefore, in the present study, versatile and universal delivery carriers were developed for various biopharmaceuticals using aminated polyrotaxane libraries. Step-by-step and logical screening revealed that aminated polyrotaxane, including the carbamate bond between the axile molecule and endcap, is suitable as a backbone polymer. Movable and flexible properties of the amino groups modified on polyrotaxane facilitated efficient complexation with various biopharmaceuticals, such as small interfering RNA, antisense oligonucleotides, messenger RNA, ß-galactosidase, and genome-editing ribonucleoproteins. Diethylenetriamine and cystamine modifications of polyrotaxane provided endosomal-escape abilities and drug-release properties in the cytosol, allowing higher delivery efficacies than commercially available high-standard carriers without cytotoxicity. Thus, the resulting polyrotaxane might serve as a versatile and universal delivery platform for various biopharmaceuticals.

3.
ACS Macro Lett ; 11(11): 1225-1229, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36215131

ABSTRACT

To achieve a systemic targeted delivery of siRNA using polymeric carriers, there is a dilemma between ligand modification and stabilization of the polyplex. Namely, ligand modification often leads to destabilization of the polyplex in the blood circulation. In fact, we previously developed cyclodextrin (CD)/polyamidoamine dendrimer conjugates (CDE) as siRNA carriers, and the interaction of CDE/siRNA was decreased by the conjugation with folate-polyethylene glycol, leading to the destabilization. To overcome this dilemma, in this study, folate-appended polyrotaxanes (Fol-PRX) were developed. Fol-PRX stabilized CDE/siRNA polyplex by intermolecularly connecting CDE molecules through a host-guest interaction between adamantane at the terminals of Fol-PRX and ß-CD in the polyplex. Moreover, the intermolecular connection of the polyplex with Fol-PRX provided movable folate moieties on the surface. As a result, Fol-PRXs enhanced the in vivo antitumor activity of the polyplex after intravenous administration, suggesting their utility as the dual-functional materials for systemic delivery of siRNA polyplexes.


Subject(s)
Rotaxanes , RNA, Small Interfering , Folic Acid , Ligands , Polyethylene Glycols
4.
ACS Appl Mater Interfaces ; 14(36): 40599-40611, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36052562

ABSTRACT

Amyloidosis pathologically proceeds via production of amyloidogenic proteins by organs, formation of protein aggregates through structural changes, and their deposition on tissues. A growing body of evidence demonstrates that amyloidosis generally develops through three critical pathological steps: (1) production of amyloid precursor proteins, (2) amyloid formation, and (3) amyloid deposition. However, no clinically effective therapy that is capable of targeting each pathological step of amyloidosis independently is currently available. Here, we combined therapeutic effects and developed a short hairpin RNA expression vector (shRNA) complex with a cyclodextrin-appended cationic dendrimer (CDE) as a novel multitarget therapeutic drug that is capable of simultaneously suppressing these three steps. We evaluated its therapeutic effects on systemic transthyretin (ATTR) amyloidosis and Alzheimer's disease (AD) as localized amyloidosis, by targeting TTR and amyloid ß, respectively. CDE/shRNA exhibited RNAi effects to suppress amyloid protein production and also achieved both inhibition of amyloid formation and disruption of existing amyloid fibrils. The multitarget therapeutic effects of CDE/shRNA were confirmed by evaluating TTR deposition reduction in early- and late-onset human ATTR amyloidosis model rats and amyloid ß deposition reduction in AppNL-G-F/NL-G-F AD model mice. Thus, the CDE/shRNA complex exhibits multifunctional therapeutic efficacy and may reveal novel strategies for establishing curative treatments for both systemic and localized amyloidosis.


Subject(s)
Alzheimer Disease , Amyloidosis , Cyclodextrins , Dendrimers , Alzheimer Disease/drug therapy , Amyloid , Amyloid beta-Peptides , Amyloidogenic Proteins , Amyloidosis/drug therapy , Amyloidosis/metabolism , Animals , Cyclodextrins/pharmacology , Dendrimers/pharmacology , Humans , Mice , RNA, Small Interfering , Rats
5.
J Pharm Sci ; 111(7): 2116-2120, 2022 07.
Article in English | MEDLINE | ID: mdl-35093335

ABSTRACT

Pharmaceutical excipients, such as surfactants, amino acids, and polymers, have often been used to improve the physicochemical properties of protein drugs. However, the effects of these additives are limited because of factors such as their weak interactions with protein drugs. In the present study, we evaluated the application of a supramolecular polymer, aminated polyrotaxane (NH2-PRX), which can strongly interact with protein drugs via its dynamic and transformable properties, as a new pharmaceutical excipient for these agents. As a conventional control polymer with low mobility and average complexation ability, aminated dextran (NH2-DEX) was also prepared. NH2-PRX significantly reduced the aggregation of antibodies induced by shaking, compared with NH2-DEX. The adsorption of insulin onto glass and polypropylene containers was also reduced by the addition of NH2-PRX. In addition, the in vivo bioactivity of insulin was completely retained in the presence of NH2-PRX. Moreover, severe adverse effects were not observed following the administration of NH2-PRX. These findings indicate the potential use of NH2-PRX as a transformable pharmaceutical excipient for protein drugs.


Subject(s)
Cyclodextrins , Insulins , Rotaxanes , Cyclodextrins/chemistry , Excipients , Pharmaceutical Preparations , Polymers/chemistry , Proteins , Rotaxanes/chemistry
6.
Mater Today Bio ; 12: 100160, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34841242

ABSTRACT

We herein developed a transformable mixing-type material for reversible PEGylation of protein drugs using a supramolecular backbone polymer, that is, polyrotaxane possessing both amino groups and PEG chains (PEG-NH2-PRX). We expected that PEG-NH2-PRX provides amino groups to interact with protein drugs on demand because the mobility of amino groups in PEG-NH2-PRX was high. In fact, PEG-NH2-PRX formed complexes with protein drugs efficiently compared to PEGylated amino-dextran (PEG-NH2-DEX), a control material fabricated with a macromolecular backbone polymer. Moreover, PEG-NH2-PRX markedly improved the stability of antibodies and prolonged the hypoglycemic effects of insulin without loss of bioactivity, compared to PEG-NH2-DEX. These findings suggest that the supramolecular material, PEG-NH2-PRX, is a promising reversible PEGylation material for protein drugs compared to macromolecular materials.

7.
Carbohydr Polym ; 256: 117419, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33483011

ABSTRACT

Recently, antibody drugs have been used worldwide, and based on worldwide sales, 7 of the top 10 pharmaceutical products in 2019 were antibody-based drugs. However, antibody drugs often form aggregates upon thermal and shaking stresses with few efficient stabilizing agents against both stresses. Herein, we developed polypseudorotaxane (PpRX) hydrogels consisting of cyclodextrins (CyDs) and polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG block copolymers (Pluronics F108, F87, F68, and L44), and evaluated their utility as antibody stabilizing agents. α- and γ-CyDs formed PpRX hydrogels with Pluronics, where CyD/F108 gels showed remarkable stabilizing effects for human immunoglobulin G (IgG) against both thermal and shaking stresses beyond CyD/PEG gels or generic gels. The effects were probably due to the interaction between IgG and the free PPG block of Pluronic F108, resulting in the strong IgG retention in the gels. These findings suggest the great potential of CyD/Pluronic gels as pharmaceutical materials for antibody formulations.


Subject(s)
Antibodies/chemistry , Biocompatible Materials/chemistry , Cyclodextrins/chemistry , Drug Compounding , Excipients/chemistry , Hydrogels/chemistry , Poloxamer/chemistry , Chemistry, Pharmaceutical/instrumentation , Delayed-Action Preparations , Drug Carriers , Humans , Immunoglobulin G/chemistry , Light , Oligosaccharides/chemistry , Particle Size , Polymers/chemistry , Rotaxanes/chemistry , Scattering, Radiation , Spectrum Analysis, Raman , Viscosity , X-Ray Diffraction
8.
J Control Release ; 328: 722-735, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33002523

ABSTRACT

The blood-brain barrier (BBB) prevents the permeability of drugs into the brain, and as such limits the management of various brain diseases. To overcome this barrier, drug-encapsulating nanoparticles or vesicles, drug conjugates, and other types of drug delivery systems (DDSs) have been developed. However, the brain-targeting ability of nanoparticles or vesicles is still insufficient. Recently, among the various brain-targeting ligands previously studied for facilitating transcellular BBB transport, several sugar-appended nanocarriers for brain delivery were identified. Meanwhile, cyclodextrins (CyDs) have been used as nanocarriers for drug delivery since they can encapsulate hydrophobic compounds with high biocompatibility. Therefore, in this study, we created various sugar-appended ß-cyclodextrins (ß-CyDs) to discover novel brain-targeting ligands. As a result, of the six sugar-appended CyDs, lactose-appended ß-CyD (Lac-ß-CyD) showed greater cellular uptake in hCMEC/D3 cells, human brain microvascular endothelial cells, than other sugar-appended ß-CyDs did. In addition, the permeability of Lac-ß-CyD within the in vitro human BBB model was greater than that of other sugar-appended ß-CyDs. Moreover, Lac-ß-CyD significantly accumulated in the mouse brain after intravenous administration. Thus, Lac-ß-CyD efficiently facilitated the accumulation of the model drug into the mouse brain. These findings suggest that Lac-ß-CyD has the potential to be a novel carrier for drugs across the BBB.


Subject(s)
Cyclodextrins , beta-Cyclodextrins , Brain , Endothelial Cells , Lactose
9.
ACS Appl Mater Interfaces ; 12(19): 21386-21397, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32315156

ABSTRACT

A preassembled Cas9/single-guide RNA complex (Cas9 ribonucleoprotein; Cas9 RNP) induces genome editing efficiently, with small off-target effects compared with the conventional techniques, such as plasmid DNA and mRNA systems. However, penetration of Cas9 RNP through the cell membrane is low. In particular, the incorporation of Cas9 RNP into neurons and the brain is challenging. In the present study, we have reported the use of a dendrimer (generation 3; G3)/glucuronylglucosyl-ß-cyclodextrin conjugate (GUG-ß-CDE (G3)) as a carrier of Cas9 RNP and evaluated genome editing activity in the neuron and the brain. A Cas9 RNP ternary complex with GUG-ß-CDE (G3) was prepared by only mixing the components. The resulting complex exhibited higher genome editing activity than the complex with the dendrimer (G3), Lipofectamine 3000 or Lipofectamine CRISPRMAX in SH-SY5Y cells, a human neuroblastoma cell line. In addition, GUG-ß-CDE (G3) enhanced the genome editing activity of Cas9 RNP in the whole mouse brain after a single intraventricular administration. Thus, GUG-ß-CDE (G3) is a useful Cas9 RNP carrier that can induce genome editing in the neuron and brain.


Subject(s)
Brain/metabolism , CRISPR-Associated Protein 9/pharmacology , Dendrimers/chemistry , Drug Carriers/chemistry , Gene Editing/methods , Ribonucleoproteins/pharmacology , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Gene Transfer Techniques , Humans , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...