Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 609: 121197, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34666143

ABSTRACT

The present study aimed to optimize Needle-Free Liquid Jet Injection (NFLJI) for Mental Incisive Nerve Blocks (MINB) and evaluate its clinical safety and feasibility. A MINB protocol was developed and optimized by series of NFLJI experiments in soft tissue phantoms and cadavers, then validated in two pilot Randomized Controlled Trials (RCT). The NFLJI penetration depth was found to be directly proportional to the supply pressure and volume. High-pressure NFLJIs (620 kPa or above) created maximum force and total work significantly greater than needle injections. Low-pressure NFLJIs (413 kPa), however, produced results similar to those of needle injections. Additionally, high-pressure NFLJIs created jet impingement pressure and maximum jet penetration pressure higher than low-pressure NFLJIs. Pilot RCTs revealed that high-pressure NFLJI caused a high risk of discomfort (60%) and paresthesia (20%); meanwhile, low-pressure NFLJI was less likely to cause complications (0%). The preliminary success rates of MINB from cadavers using NFLJIs and needles were 83.3% and 87.5%. In comparison, those from RCTs are 60% and 70%, respectively. To conclude, NFLJI supply pressure can be adjusted to achieve effective MINB with minimal complications. Furthermore, the cadaver study and pilot RCTs confirmed the feasibility for further non-inferiority RCT.


Subject(s)
Needles , Nerve Block , Anesthetics, Local , Cadaver , Humans , Injections , Injections, Jet
2.
Tissue Eng Part C Methods ; 22(9): 823-38, 2016 09.
Article in English | MEDLINE | ID: mdl-27537192

ABSTRACT

The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies.


Subject(s)
Bioreactors , Fibroblasts/cytology , Models, Biological , Tissue Engineering/methods , Vocal Cords/cytology , Cell Culture Techniques , Cells, Cultured , Fibroblasts/physiology , Humans , Perfusion , Vocal Cords/physiology
SELECTION OF CITATIONS
SEARCH DETAIL