Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121091, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35306303

ABSTRACT

A common task is the determination of system parameters from spectroscopy, where one compares the experimental spectrum with calculated spectra, that depend on the desired parameters. Here we discuss an approach based on a machine learning technique, where the parameters for the numerical calculations are chosen from Gaussian Process Regression (GPR). This approach does not only quickly converge to an optimal parameter set, but in addition provides information about the complete parameter space, which allows for example to identify extended parameter regions where numerical spectra are consistent with the experimental one. We consider as example dimers of organic molecules and aim at extracting in particular the interaction between the monomers, and their mutual orientation. We find that indeed the GPR gives reliable results which are in agreement with direct calculations of these parameters using quantum chemical methods.


Subject(s)
Machine Learning , Normal Distribution , Spectrum Analysis
2.
Sci Rep ; 7(1): 4432, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667321

ABSTRACT

Despite some inconclusive experimental evidences for the vibrational model of olfaction, the validity of the model has not been examined yet and therefore it suffers from the lack of conclusive experimental support. Here, we generalize the model and propose a numerical analysis of the dissipative odorant-mediated inelastic electron tunneling mechanism of olfaction, to be used as a potential examination in experiments. Our analysis gives several predictions on the model such as efficiency of elastic and inelastic tunneling of electrons through odorants, sensitivity thresholds in terms of temperature and pressure, isotopic effect on sensitivity, and the chiral recognition for discrimination between the similar and different scents. Our predictions should yield new knowledge to design new experimental protocols for testing the validity of the model.


Subject(s)
Models, Biological , Olfactory Perception , Algorithms , Humans , Odorants , Olfactory Mucosa/physiology , Pressure , Receptors, Odorant/metabolism , Smell , Temperature
3.
Article in English | MEDLINE | ID: mdl-26465515

ABSTRACT

We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.


Subject(s)
Discrimination, Psychological/physiology , Models, Biological , Odorants , Olfactory Perception/physiology , Electron Transport , Isomerism , Periodicity , Smell/physiology , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...