Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38636136

ABSTRACT

A liquid chromatography - electrospray ionization-mass spectrometry (LC-ESI-MS) method was developed for the quantification of letrozole, a third-generation aromatase inhibitor, and its main carbinol metabolite (CM) in support of murine pharmacokinetic studies. Using polarity switching, simultaneous ESI-MS measurement of letrozole and CM was achieved in positive and negative mode, respectively. The assay procedure involved a one-step protein precipitation and extraction of all analytes from mouse plasma requiring only 5 µL of sample. Separation was optimized on an Accucore aQ column with gradient elution at a flow rate of 0.4 mL/min in 5 min. Two calibration curves per day over four consecutive measurement days showed satisfactory linear responses (r2 > 0.99) over concentration ranges of 5-1000 ng/mL and 20-2000 ng/mL for letrozole and CM, respectively. No matrix effect was found, and the mean extraction recoveries were 103-108 % for letrozole and 99.8-107 % for CM. Precision and accuracy within a single run and over four consecutive measurement days were verified to be within acceptable limits. Application of the developed method to preclinical pharmacokinetic studies in mice receiving oral letrozole at a dose 1 or 10 mg/kg revealed that the systemic exposure to letrozole was dose-, formulation-, and strain-dependent. These findings may inform the future design of preclinical studies aimed at refining the pharmacological profile of this clinically important drug.


Subject(s)
Aromatase Inhibitors , Letrozole , Nitriles , Tandem Mass Spectrometry , Triazoles , Animals , Letrozole/blood , Letrozole/pharmacokinetics , Letrozole/chemistry , Mice , Tandem Mass Spectrometry/methods , Aromatase Inhibitors/blood , Aromatase Inhibitors/pharmacokinetics , Aromatase Inhibitors/chemistry , Chromatography, High Pressure Liquid/methods , Nitriles/blood , Nitriles/pharmacokinetics , Triazoles/blood , Triazoles/pharmacokinetics , Triazoles/chemistry , Reproducibility of Results , Linear Models , Limit of Detection , Female , Male
2.
Clin Case Rep ; 12(1): e8394, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188848

ABSTRACT

Fazio-Londe disease and Brown-Vialetto-Van Laere syndrome are rare related neurological disorders. Although SLC52A3 and SLC52A2 that encode riboflavin transporters are their only known causative genes, many patients without mutations in these genes have been reported. Clinical and genetic data of a patient with features suggestive of Fazio-Londe disease are presented. Neurological examination revealed significant involvement of cranial nerves and weakness in the lower extremities. Pontobulbar presentations were prominent. EDX study suggested motor neuronopathy. Hearing was normal. She was diagnosed with FL disease. Response to riboflavin supplementation was not favorable. The patient's pedigree suggested recessive inheritance. SLC52A3 and SLC52A2 were screened and mutations were not observed. Results of exome sequencing and segregation analysis suggested that a mutation in TNRC18 is a candidate cause of disease in the patient. The three dimensional structure of the TNRC18 protein was predicted and it was noted that its two conserved domains (BAH and Tudor) interact and that the valine residue affected by the mutation is positioned close to both domains. A mutation in TNRC18 is cautiously reported as the possible cause of FL disease in the patient. The finding warrants further inquiries on TNRC18 about which little is presently known.

3.
Cancer Res Commun ; 2(11): 1334-1343, 2022 11.
Article in English | MEDLINE | ID: mdl-36506732

ABSTRACT

Oxaliplatin-induced peripheral neurotoxicity (OIPN) is a debilitating side effect that afflicts ~90% of patients that is initiated by OCT2-dependent uptake of oxaliplatin in DRG neurons. The antidepressant drug duloxetine has been used to treat OIPN, although its usefulness in preventing this side effect remains unclear. We hypothesized that duloxetine has OCT2-inhibitory properties and can be used as an adjunct to oxaliplatin-based regimens to prevent OIPN. Transport studies were performed in cells stably transfected with mouse or human OCT2 and in isolated mouse DRG neurons ex vivo. Wild-type and OCT2-deficient mice were used to assess effects of duloxetine on hallmarks of OIPN, endogenous OCT2 biomarkers, and the pharmacokinetics of oxaliplatin, and the translational feasibility of a duloxetine-oxaliplatin combination was evaluated in various models of colorectal cancer. We found that duloxetine potently inhibited the OCT2-mediated transport of several xenobiotic substrates, including oxaliplatin, in a reversible, concentration-dependent manner, and independent of species and cell context. Furthermore, duloxetine restricted access of these substrates to DRG neurons ex vivo and prevented OIPN in wild-type mice to a degree similar to the complete protection observed in OCT2-deficient mice, without affecting the plasma levels of oxaliplatin. Importantly, the uptake and cytotoxicity of oxaliplatin in tumor cell lines in vitro and in vivo were not negatively influenced by duloxetine. The observed OCT2-targeting properties of duloxetine, combined with the potential for clinical translation, provide support for its further exploration as a therapeutic candidate for studies aimed at preventing OIPN in cancer patients requiring treatment with oxaliplatin. Significance: We found that duloxetine has potent OCT2-inhibitory properties and can diminish excessive accumulation of oxaliplatin into DRG neurons. In addition, pre-treatment of mice with duloxetine prevented OIPN without significantly altering the plasma pharmacokinetics and antitumor properties of oxaliplatin. These results suggest that intentional inhibition of OCT2-mediated transport by duloxetine can be employed as a prevention strategy to ameliorate OIPN without compromising the effectiveness of oxaliplatin-based treatment.


Subject(s)
Antineoplastic Agents , Neurotoxicity Syndromes , Peripheral Nervous System Diseases , Humans , Mice , Animals , Oxaliplatin/adverse effects , Antineoplastic Agents/toxicity , Duloxetine Hydrochloride/pharmacology , Peripheral Nervous System Diseases/chemically induced , Neurotoxicity Syndromes/drug therapy
4.
Pharmaceutics ; 14(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36145680

ABSTRACT

In recent years, various endogenous compounds have been proposed as putative biomarkers for the hepatic uptake transporters OATP1B1 and OATP1B3 that have the potential to predict transporter-mediated drug-drug interactions (DDIs). However, these compounds have often been identified from top-down strategies and have not been fully utilized as a substitute for traditional DDI studies. In an attempt to eliminate observer bias in biomarker selection, we applied a bottom-up, untargeted metabolomics screening approach in mice and found that plasma levels of the conjugated bile acid chenodeoxycholate-24-glucuronide (CDCA-24G) are particularly sensitive to deletion of the orthologous murine transporter Oatp1b2 (31-fold increase vs. wild type) or the entire Oatp1a/1b(-/-)cluster (83-fold increased), whereas the humanized transgenic overexpression of hepatic OATP1B1 or OATP1B3 resulted in the partial restoration of transport function. Validation studies with the OATP1B1/OATP1B3 inhibitors rifampin and paclitaxel in vitro as well as in mice and human subjects confirmed that CDCA-24G is a sensitive and rapid response biomarker to dose-dependent transporter inhibition. Collectively, our study confirmed the ability of CDCA-24G to serve as a sensitive and selective endogenous biomarker of OATP1B-type transport function and suggests a template for the future development of biomarkers for other clinically important xenobiotic transporters.

5.
Eur J Neurol ; 29(12): 3556-3563, 2022 12.
Article in English | MEDLINE | ID: mdl-35996994

ABSTRACT

BACKGROUND AND PURPOSE: Spinal-bulbar muscular atrophy (SBMA) (Kennedy's disease) is a motor neuron disease. Kennedy's disease is nearly exclusively caused by mutations in the androgen receptor encoding gene (AR). The results of studies aimed at identification of the genetic cause of a disease that best approximates SBMA in a pedigree (four patients) without mutations in AR are reported. METHODS: Clinical investigations included thorough neurological and non-neurological examinations and testing. Genetic analysis was performed by exome sequencing using standard protocols. UBA1 mutations were modeled on the crystal structure of UBA1. RESULTS: The clinical features of the patients are described in detail. A missense mutation in UBA1 (c.T1499C; p.Ile500Thr) was identified as the probable cause of the non-Kennedy SBMA in the pedigree. Like AR, UBA1 is positioned on chromosome X. UBA1 is a highly conserved gene. It encodes ubiquitin-like modifier activating enzyme 1 (UBA1) which is the major E1 enzyme of the ubiquitin-proteasome system. Interestingly, UBA1 mutations can also cause infantile-onset X-linked spinal muscular atrophy (XL-SMA). The mutation identified here and the XL-SMA causative mutations were shown to affect amino acids positioned in the vicinity of UBA1's ATP binding site and to cause structural changes. CONCLUSION: UBA1 was identified as a novel SBMA causative gene. The gene affects protein homeostasis which is one of most important components of the pathology of neurodegeneration. The contribution of this same gene to the etiology of XL-SMA is discussed.


Subject(s)
Arthrogryposis , Bulbo-Spinal Atrophy, X-Linked , Motor Neuron Disease , Muscular Atrophy, Spinal , Ubiquitin-Activating Enzymes , Humans , Arthrogryposis/complications , Bulbo-Spinal Atrophy, X-Linked/genetics , Motor Neuron Disease/complications , Muscular Atrophy/complications , Muscular Atrophy, Spinal/genetics , Receptors, Androgen/genetics , Ubiquitins , Ubiquitin-Activating Enzymes/genetics
6.
J Med Genet ; 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35879052

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. The approximately 50 known ALS-associated genes do not fully explain its heritability, which suggests the existence of yet unidentified causative genes. We report results of studies aimed at identification of the genetic cause of ALS in a pedigree (three patients) without mutations in the common ALS-causative genes. METHODS: Clinical investigations included thorough neurological and non-neurological examinations and testings. Genetic analysis was performed by exome sequencing. Functional studies included identification of altered splicing by PCR and sequencing, and mutated proteins by western blot analysis. Apoptosis in the presence and absence of tunicamycin was assessed in transfected HEK293T cells using an Annexin-PE-7AAD kit in conjunction with flow cytometry. RESULTS: Clinical features are described in detail. Disease progression in the patients of the pedigree was relatively slow and survival was relatively long. An RNF13 mutation was identified as the cause of the recessively inherited ALS in the pedigree. The gene is highly conserved, and its encoded protein (RING finger protein 13) can potentially affect various neurodegenerative-relevant functions, including protein homeostasis. The RNF13 splice site mutation caused expression of two mis-spliced forms of RNF13 mRNA and an aberrant RNF13 protein, and affected apoptosis. CONCLUSION: RNF13 was identified as a novel causative gene of recessively inherited ALS. The gene affects protein homeostasis, which is one of most important components of the pathology of neurodegeneration. The contribution of RNF13 to the aetiology of another neurodegenerative disease is discussed.

7.
Neuromuscul Disord ; 31(6): 528-531, 2021 06.
Article in English | MEDLINE | ID: mdl-33824075

ABSTRACT

Sandhoff disease is a rare fatal infantile neurologic disorder. Adult onset Sandhoff is even rarer. Variability of clinical features in adult onset Sandhoff patients and overlaps between these and features of other neurologic diseases have sometimes led to mis-diagnosis. We describe an adult onset Sandhoff disease affected individual whose clinical presentation were also consistent with the Brown-Vialetto-Van Laere syndrome (BVVL) diagnosis. Screening of BVVL-causing genes, SLC52A3 and SLC52A2, did not identify candidate disease-causing mutations, but exome sequencing revealed compound heterozygous mutations in the known Sandhoff disease-causing gene, HEXB. Decreased blood hexosaminidase activity and evidence of cerebellar atrophy confirmed Sandhoff disease diagnosis. To the best of our knowledge, this is the first report of a Sandhoff disease case that mimics BVVL and that presents with prominent cranial nerve involvement. For differential diagnosis, measurement of hexosaminidase activity and MRI should quickly be performed. Genetic analysis can be done for confirmation of diagnosis.


Subject(s)
Bulbar Palsy, Progressive/diagnosis , Hearing Loss, Sensorineural/diagnosis , Sandhoff Disease/diagnosis , Diagnosis, Differential , Female , Humans , Magnetic Resonance Imaging , Mutation , Exome Sequencing , Young Adult
8.
J Neurol ; 268(2): 640-650, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32897397

ABSTRACT

BACKGROUND: Charcot-Marie-Tooth (CMT) disease is a prevalent and heterogeneous peripheral neuropathy. Most patients affected with the axonal form of CMT (CMT2) do not harbor mutations in the approximately 90 known CMT-associated genes. We aimed to identify causative genes in two CMT2 pedigrees. METHODS: Neurologic examination, laboratory tests and brain MRIs were performed. Genetic analysis included exome sequencing of four patients from the two pedigrees. The predicted effect of a deep intronic mutation on splicing was tested by regular and real-time PCR and sequencing. RESULTS: Clinical data were consistent with CMT2 diagnosis. Inheritance patterns were autosomal recessive. Exome data of CMT2-101 did not include mutations in known CMT-associated genes. Sequence data, segregation analysis, bioinformatics analysis, evolutionary conservation, and information in the literature strongly implicated HADHA as the causative gene. An intronic variation positioned 23 nucleotides away from following intron/exon border in GDAP1 was ultimately identified as cause of CMT in CMT2-102. It was shown to affect splicing. CONCLUSION: The finding of a HADHA mutation as a cause of CMT is of interest because its encoded protein is a subunit of the mitochondrial trifunctional protein (MTP) complex, a mitochondrial enzyme involved in long chain fatty acid oxidation. Long chain fatty acid oxidation is an important source of energy for skeletal muscles. The mutation found in CMT2-102 is only the second intronic mutation reported in GDAP1. The mutation in the CMT2-102 pedigree was outside the canonical splice site sequences, emphasizing the importance of careful examination of available intronic sequences in exome sequence data.


Subject(s)
Charcot-Marie-Tooth Disease , Mitochondrial Trifunctional Protein, alpha Subunit/genetics , Charcot-Marie-Tooth Disease/genetics , Consanguinity , Genotype , Humans , Mutation , Pedigree
9.
Neurobiol Aging ; 99: 102.e1-102.e10, 2021 03.
Article in English | MEDLINE | ID: mdl-33189404

ABSTRACT

Brown-Vialetto-Van Laere (BVVL) and Fazio-Londe are disorders with amyotrophic lateral sclerosis-like features, usually with recessive inheritance. We aimed to identify causative mutations in 10 probands. Neurological examinations, genetic analysis, audiometry, magnetic resonance imaging, biochemical and immunological testings, and/or muscle histopathology were performed. Mutations in known causative gene SLC52A3 were found in 7 probands. More importantly, only 1 mutated allele was observed in several patients, and variable expressivity and incomplete penetrance were clearly noted. Environmental insults may contribute to variable presentations. Putative causative mutations in other genes were identified in 3 probands. Two of the genes, WDFY4 and TNFSF13B, have immune-related functions. Inflammatory responses were implicated in the patient with the WDFY4 mutation. Malfunction of the immune system and mitochondrial anomalies were shown in the patient with the TNFSF13B mutation. Prevalence of heterozygous SLC52A3 BVVL causative mutations and notable variability in expressivity of homozygous and heterozygous genotypes are being reported for the first time. Identification of WDFY4 and TNFSF13B as candidate causative genes supports conjectures on involvement of the immune system in BVVL and amyotrophic lateral sclerosis.


Subject(s)
B-Cell Activating Factor/genetics , Bulbar Palsy, Progressive/genetics , Genetic Association Studies , Intracellular Signaling Peptides and Proteins/genetics , Membrane Transport Proteins/genetics , Mutation , Amyotrophic Lateral Sclerosis/genetics , Audiometry , Bulbar Palsy, Progressive/diagnosis , Bulbar Palsy, Progressive/pathology , Female , Genetic Testing , Humans , Immunologic Tests , Magnetic Resonance Imaging , Male , Muscles/pathology , Neurologic Examination
10.
Mol Genet Genomic Med ; 8(7): e1240, 2020 07.
Article in English | MEDLINE | ID: mdl-32383541

ABSTRACT

BACKGROUND: SPG11 mutations can cause autosomal recessive hereditary spastic paraplegia (ARHSP) and juvenile amyotrophic lateral sclerosis (JALS). Because these diseases share some clinical presentations and both can be caused by SPG11 mutations, it was considered that definitive diagnosis may not be straight forward. METHODS: The DNAs of referred ARHSP and JALS patients were exome sequenced. Clinical data of patients with SPG11 mutations were gathered by interviews and neurological examinations including electrodiagnosis (EDX) and magnetic resonance imaging (MRI). RESULTS: Eight probands with SPG11 mutations were identified. Two mutations are novel. Among seven Iranian probands, six carried the p.Glu1026Argfs*4-causing mutation. All eight patients had features known to be present in both ARHSP and JALS. Additionally and surprisingly, presence of both thin corpus callosum (TCC) on MRI and motor neuronopathy were also observed in seven patients. These presentations are, respectively, key suggestive features of ARHSP and JALS. CONCLUSION: We suggest that rather than ARHSP or JALS, combined ARHSP/JALS is the appropriate description of seven patients studied. Criteria for ARHSP, JALS, and combined ARHSP/JALS designations among patients with SPG11 mutations are suggested. The importance of performing both EDX and MRI is emphasized. Initial screening for p.Glu1026Argfs*4 may facilitate SPG11 screenings in Iranian patients.


Subject(s)
Mutation , Phenotype , Proteins/genetics , Spastic Paraplegia, Hereditary/genetics , Adolescent , Adult , Corpus Callosum/diagnostic imaging , Diagnosis, Differential , Electrodiagnosis , Female , Genetic Testing , Humans , Magnetic Resonance Imaging , Male , Spastic Paraplegia, Hereditary/diagnosis
11.
Am J Med Genet A ; 179(8): 1507-1515, 2019 08.
Article in English | MEDLINE | ID: mdl-31111683

ABSTRACT

Charcot-Marie-Tooth (CMT) is a common neuropathy, and hereditary motor and sensory neuropathy with proximal predominance (HMSN-P) is a recently described rare neuromuscular disease. Although many genes have been implicated for CMT, TFG is the only known HMSN-P-causing gene. Within the framework of diagnostic criteria, clinical variation is evident among CMT-diagnosed and also HMSN-P-diagnosed individuals. Mutations that cause p.(Pro285Leu) and p.(Gly269Val) in TFG were earlier reported as cause of HMSN-P in two Iranian pedigrees. Here, we report the identification of p.(Gly269Val) in TFG as cause of CMT in a large Iranian pedigree. The clinical features of patients of the three pedigrees are presented and critically compared. Similarities between the two HMSN-P-diagnosed pedigrees with different TFG mutations, and differences between the two differentially diagnosed pedigrees with the same p.(Gly269Val) mutation were evident. The clinical features of the HMSN-P pedigree with the p.(Pro285Leu) and the CMT pedigree with the p.(Gly269Val) mutation were clearly congruent with the respective diagnoses, whereas the features of the HMSN-P-diagnosed pedigree with the p.(Gly269Val) were intermediate between the other two pedigrees. It is therefore suggested that the clinical features of the three Iranian pedigrees with TFG mutations and diagnosed with HMSN-P or CMT represent a continuum.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Mutation , Proteins/genetics , Adolescent , Adult , Aged , Base Sequence , Charcot-Marie-Tooth Disease/diagnosis , Child , Child, Preschool , Female , Gene Expression , Heterozygote , Humans , Infant , Iran , Male , Middle Aged , Pedigree , Phenotype , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...