Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
NAR Genom Bioinform ; 6(2): lqae048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745991

ABSTRACT

RNAs are essential molecules involved in numerous biological functions. Understanding RNA functions requires the knowledge of their 3D structures. Computational methods have been developed for over two decades to predict the 3D conformations from RNA sequences. These computational methods have been widely used and are usually categorised as either ab initio or template-based. The performances remain to be improved. Recently, the rise of deep learning has changed the sight of novel approaches. Deep learning methods are promising, but their adaptation to RNA 3D structure prediction remains difficult. In this paper, we give a brief review of the ab initio, template-based and novel deep learning approaches. We highlight the different available tools and provide a benchmark on nine methods using the RNA-Puzzles dataset. We provide an online dashboard that shows the predictions made by benchmarked methods, freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr/evryrna/state_of_the_rnart/.

2.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38436560

ABSTRACT

RNA is a complex macromolecule that plays central roles in the cell. While it is well known that its structure is directly related to its functions, understanding and predicting RNA structures is challenging. Assessing the real or predictive quality of a structure is also at stake with the complex 3D possible conformations of RNAs. Metrics have been developed to measure model quality while scoring functions aim at assigning quality to guide the discrimination of structures without a known and solved reference. Throughout the years, many metrics and scoring functions have been developed, and no unique assessment is used nowadays. Each developed assessment method has its specificity and might be complementary to understanding structure quality. Therefore, to evaluate RNA 3D structure predictions, it would be important to calculate different metrics and/or scoring functions. For this purpose, we developed RNAdvisor, a comprehensive automated software that integrates and enhances the accessibility of existing metrics and scoring functions. In this paper, we present our RNAdvisor tool, as well as state-of-the-art existing metrics, scoring functions and a set of benchmarks we conducted for evaluating them. Source code is freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr.


Subject(s)
Benchmarking , RNA , Models, Structural , RNA/genetics , Software
3.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37337745

ABSTRACT

RNAs can interact with other molecules in their environment, such as ions, proteins or other RNAs, to form complexes with important biological roles. The prediction of the structure of these complexes is therefore an important issue and a difficult task. We are interested in RNA complexes composed of several (more than two) interacting RNAs. We show how available knowledge on the considered RNAs can help predict their secondary structure. We propose an interactive tool for the prediction of RNA complexes, called C-RCPRed, that considers user knowledge and probing data (which can be generated experimentally or artificially). C-RCPred is based on a multi-objective optimization algorithm. Through an extensive benchmarking procedure, which includes state-of-the-art methods, we show the efficiency of the multi-objective approach and the positive impact of considering user knowledge and probing data on the prediction results. C-RCPred is freely available as an open-source program and web server on the EvryRNA website (https://evryrna.ibisc.univ-evry.fr).


Subject(s)
RNA , Software , RNA/chemistry , Sequence Analysis, RNA/methods , Algorithms , Protein Structure, Secondary , Nucleic Acid Conformation
4.
PLoS One ; 18(5): e0286137, 2023.
Article in English | MEDLINE | ID: mdl-37228138

ABSTRACT

In the sea of data generated daily, unlabeled samples greatly outnumber labeled ones. This is due to the fact that, in many application areas, labels are scarce or hard to obtain. In addition, unlabeled samples might belong to new classes that are not available in the label set associated with data. In this context, we propose A3SOM, an abstained explainable semi-supervised neural network that associates a self-organizing map to dense layers in order to classify samples. Abstained classification enables the detection of new classes and class overlaps. The use of a self-organizing map in A3SOM allows integrated visualization and makes the model explainable. Along with describing our approach, this paper shows that the method is competitive with other classifiers and demonstrates the benefits of including abstention rules. A use case is presented on breast cancer subtype classification and discovery to show the relevance of our method in real-world medical problems.


Subject(s)
Algorithms , Neural Networks, Computer , Supervised Machine Learning
5.
Nucleic Acids Res ; 51(W1): W281-W288, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37158254

ABSTRACT

Recent advances have shown that some biologically active non-coding RNAs (ncRNAs) are actually translated into polypeptides that have a physiological function as well. This paradigm shift requires adapted computational methods to predict this new class of 'bifunctional RNAs'. Previously, we developed IRSOM, an open-source algorithm to classify non-coding and coding RNAs. Here, we use the binary statistical model of IRSOM as a ternary classifier, called IRSOM2, to identify bifunctional RNAs as a rejection of the two other classes. We present its easy-to-use web interface, which allows users to perform predictions on large datasets of RNA sequences in a short time, to re-train the model with their own data, and to visualize and analyze the classification results thanks to the implementation of self-organizing maps (SOM). We also propose a new benchmark of experimentally validated RNAs that play both protein-coding and non-coding roles, in different organisms. Thus, IRSOM2 showed promising performance in detecting these bifunctional transcripts among ncRNAs of different types, such as circRNAs and lncRNAs (in particular those of shorter lengths). The web server is freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr.


Subject(s)
Algorithms , Computational Biology , Computer Simulation , RNA , RNA, Long Noncoding/chemistry , Sequence Analysis, RNA/methods , Computational Biology/instrumentation , Computational Biology/methods , RNA/chemistry , RNA/classification , Internet
6.
Bioinformatics ; 37(9): 1218-1224, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33135044

ABSTRACT

MOTIVATION: Applied research in machine learning progresses faster when a clean dataset is available and ready to use. Several datasets have been proposed and released over the years for specific tasks such as image classification, speech-recognition and more recently for protein structure prediction. However, for the fundamental problem of RNA structure prediction, information is spread between several databases depending on the level we are interested in: sequence, secondary structure, 3D structure or interactions with other macromolecules. In order to speed-up advances in machine-learning based approaches for RNA secondary and/or 3D structure prediction, a dataset integrating all this information is required, to avoid spending time on data gathering and cleaning. RESULTS: Here, we propose the first attempt of a standardized and automatically generated dataset dedicated to RNA combining together: RNA sequences, homology information (under the form of position-specific scoring matrices) and information derived by annotation of available 3D structures (including secondary structure, canonical and non-canonical interactions and backbone torsion angles). The data are retrieved from public databases PDB, Rfam and SILVA. The paper describes the procedure to build such dataset and the RNA structure descriptors we provide. Some statistical descriptions of the resulting dataset are also provided. AVAILABILITY AND IMPLEMENTATION: The dataset is updated every month and available online (in flat-text file format) on the EvryRNA software platform (https://evryrna.ibisc.univ-evry.fr/evryrna/rnanet). An efficient parallel pipeline to build the dataset is also provided for easy reproduction or modification. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA , Software , Algorithms , Proteins/genetics , RNA/genetics , Sequence Analysis, RNA , Sequence Homology
7.
Bioinformatics ; 36(8): 2451-2457, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31913439

ABSTRACT

MOTIVATION: RNA loops have been modelled and clustered from solved 3D structures into ordered collections of recurrent non-canonical interactions called 'RNA modules', available in databases. This work explores what information from such modules can be used to improve secondary structure prediction. We propose a bi-objective method for predicting RNA secondary structures by minimizing both an energy-based and a knowledge-based potential. The tool, called BiORSEO, outputs secondary structures corresponding to the optimal solutions from the Pareto set. RESULTS: We compare several approaches to predict secondary structures using inserted RNA modules information: two module data sources, Rna3Dmotif and the RNA 3D Motif Atlas, and different ways to score the module insertions: module size, module complexity or module probability according to models like JAR3D and BayesPairing. We benchmark them against a large set of known secondary structures, including some state-of-the-art tools, and comment on the usefulness of the half physics-based, half data-based approach. AVAILABILITY AND IMPLEMENTATION: The software is available for download on the EvryRNA website, as well as the datasets. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , RNA , Nucleic Acid Conformation , Nucleotide Motifs , Sequence Analysis, RNA , Software
8.
BMC Bioinformatics ; 20(Suppl 3): 128, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30925864

ABSTRACT

BACKGROUND: RNAs can interact and form complexes, which have various biological roles. The secondary structure prediction of those complexes is a first step towards the identification of their 3D structure. We propose an original approach that takes advantage of the high number of RNA secondary structure and RNA-RNA interaction prediction tools. We formulate the problem of RNA complex prediction as the determination of the best combination (according to the free energy) of predicted RNA secondary structures and RNA-RNA interactions. RESULTS: We model those predicted structures and interactions as a graph in order to have a combinatorial optimization problem that is a constrained maximum weight clique problem. We propose an heuristic based on Breakout Local Search to solve this problem and a tool, called RCPred, that returns several solutions, including motifs like internal and external pseudoknots. On a large number of complexes, RCPred gives competitive results compared to the methods of the state of the art. CONCLUSIONS: We propose in this paper a method called RCPred for the prediction of several secondary structures of RNA complexes, including internal and external pseudoknots. As further works we will propose an improved computation of the global energy and the insertion of 3D motifs in the RNA complexes.


Subject(s)
Algorithms , RNA/chemistry , Databases, Nucleic Acid , Nucleic Acid Conformation , Sequence Analysis, RNA/methods
9.
Bioinformatics ; 34(17): i620-i628, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30423081

ABSTRACT

Motivation: Non-coding RNAs (ncRNAs) play important roles in many biological processes and are involved in many diseases. Their identification is an important task, and many tools exist in the literature for this purpose. However, almost all of them are focused on the discrimination of coding and ncRNAs without giving more biological insight. In this paper, we propose a new reliable method called IRSOM, based on a supervised Self-Organizing Map (SOM) with a rejection option, that overcomes these limitations. The rejection option in IRSOM improves the accuracy of the method and also allows identifing the ambiguous transcripts. Furthermore, with the visualization of the SOM, we analyze the rejected predictions and highlight the ambiguity of the transcripts. Results: IRSOM was tested on datasets of several species from different reigns, and shown better results compared to state-of-art. The accuracy of IRSOM is always greater than 0.95 for all the species with an average specificity of 0.98 and an average sensitivity of 0.99. Besides, IRSOM is fast (it takes around 254 s to analyze a dataset of 147 000 transcripts) and is able to handle very large datasets. Availability and implementation: IRSOM is implemented in Python and C++. It is available on our software platform EvryRNA (http://EvryRNA.ibisc.univ-evry.fr).


Subject(s)
Algorithms , RNA, Untranslated/genetics , Software
10.
BMC Bioinformatics ; 19(1): 13, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29334887

ABSTRACT

BACKGROUND: RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. RESULTS: We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F1-score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F1-scores are always higher than 70% for any number of solutions returned. CONCLUSION: The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .


Subject(s)
Computational Biology/methods , Nucleic Acid Conformation , RNA/chemistry , Algorithms , Databases, Genetic , Models, Molecular , Time Factors
11.
PLoS One ; 12(6): e0179787, 2017.
Article in English | MEDLINE | ID: mdl-28622364

ABSTRACT

Many computational tools have been proposed during the two last decades for predicting piRNAs, which are molecules with important role in post-transcriptional gene regulation. However, these tools are mostly based on only one feature that is generally related to the sequence. Discoveries in the domain of piRNAs are still in their beginning stages, and recent publications have shown many new properties. Here, we propose an integrative approach for piRNA prediction in which several types of genomic and epigenomic properties that can be used to characterize these molecules are examined. We reviewed and extracted a large number of piRNA features from the literature that have been observed experimentally in several species. These features are represented by different kernels, in a Multiple Kernel Learning based approach, implemented within an object-oriented framework. The obtained tool, called IpiRId, shows prediction results that attain more than 90% of accuracy on different tested species (human, mouse and fly), outperforming all existing tools. Besides, our method makes it possible to study the validity of each given feature in a given species. Finally, the developed tool is modular and easily extensible, and can be adapted for predicting other types of ncRNAs. The IpiRId software and the user-friendly web-based server of our tool are now freely available to academic users at: https://evryrna.ibisc.univ-evry.fr/evryrna/.


Subject(s)
Databases, Nucleic Acid , Epigenomics , RNA, Small Interfering/genetics , Sequence Analysis, RNA/methods , Animals , Mice
12.
Methods Mol Biol ; 1543: 145-168, 2017.
Article in English | MEDLINE | ID: mdl-28349425

ABSTRACT

The secondary structure of an RNA molecule represents the base-pairing interactions within the molecule and fundamentally determines its overall structure. In this chapter, we overview the main approaches and existing tools for predicting RNA secondary structures, as well as methods for identifying noncoding RNAs from genomic sequences or RNA sequencing data. We then focus on the identification of a well-known class of small noncoding RNAs, namely microRNAs, which play very important roles in many biological processes through regulating post-transcriptionally the expression of genes and which dysregulation has been shown to be involved in several human diseases.


Subject(s)
Computational Biology/methods , Models, Molecular , Nucleic Acid Conformation , RNA/chemistry , Animals , Computer Simulation , Humans
13.
Nucleic Acids Res ; 44(W1): W181-4, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27242364

ABSTRACT

Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold.


Subject(s)
Algorithms , Genome , MicroRNAs/genetics , RNA Precursors/genetics , Software , Animals , Computer Graphics , Humans , Information Storage and Retrieval , Internet , MicroRNAs/classification , Plants/genetics , RNA Folding , RNA Precursors/classification , Sequence Analysis, RNA
14.
RNA ; 21(5): 775-85, 2015 May.
Article in English | MEDLINE | ID: mdl-25795417

ABSTRACT

Identification of microRNAs (miRNAs) is an important step toward understanding post-transcriptional gene regulation and miRNA-related pathology. Difficulties in identifying miRNAs through experimental techniques combined with the huge amount of data from new sequencing technologies have made in silico discrimination of bona fide miRNA precursors from non-miRNA hairpin-like structures an important topic in bioinformatics. Among various techniques developed for this classification problem, machine learning approaches have proved to be the most promising. However these approaches require the use of training data, which is problematic due to an imbalance in the number of miRNAs (positive data) and non-miRNAs (negative data), which leads to a degradation of their performance. In order to address this issue, we present an ensemble method that uses a boosting technique with support vector machine components to deal with imbalanced training data. Classification is performed following a feature selection on 187 novel and existing features. The algorithm, miRBoost, performed better in comparison with state-of-the-art methods on imbalanced human and cross-species data. It also showed the highest ability among the tested methods for discovering novel miRNA precursors. In addition, miRBoost was over 1400 times faster than the second most accurate tool tested and was significantly faster than most of the other tools. miRBoost thus provides a good compromise between prediction efficiency and execution time, making it highly suitable for use in genome-wide miRNA precursor prediction. The software miRBoost is available on our web server http://EvryRNA.ibisc.univ-evry.fr.


Subject(s)
Computational Biology/methods , MicroRNAs/classification , RNA Precursors/classification , Software , Support Vector Machine , Animals , Databases, Genetic , Humans , Information Storage and Retrieval/methods , MicroRNAs/genetics , RNA Precursors/genetics , Sensitivity and Specificity , Sequence Alignment/methods
15.
Bioinformatics ; 30(17): i364-70, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25161221

ABSTRACT

MOTIVATION: Piwi-interacting RNA (piRNA) is the most recently discovered and the least investigated class of Argonaute/Piwi protein-interacting small non-coding RNAs. The piRNAs are mostly known to be involved in protecting the genome from invasive transposable elements. But recent discoveries suggest their involvement in the pathophysiology of diseases, such as cancer. Their identification is therefore an important task, and computational methods are needed. However, the lack of conserved piRNA sequences and structural elements makes this identification challenging and difficult. RESULTS: In the present study, we propose a new modular and extensible machine learning method based on multiple kernels and a support vector machine (SVM) classifier for piRNA identification. Very few piRNA features are known to date. The use of a multiple kernels approach allows editing, adding or removing piRNA features that can be heterogeneous in a modular manner according to their relevance in a given species. Our algorithm is based on a combination of the previously identified features [sequence features (k-mer motifs and a uridine at the first position) and piRNAs cluster feature] and a new telomere/centromere vicinity feature. These features are heterogeneous, and the kernels allow to unify their representation. The proposed algorithm, named piRPred, gives promising results on Drosophila and Human data and outscores previously published piRNA identification algorithms. AVAILABILITY AND IMPLEMENTATION: piRPred is freely available to non-commercial users on our Web server EvryRNA http://EvryRNA.ibisc.univ-evry.fr.


Subject(s)
Algorithms , Artificial Intelligence , RNA, Small Interfering/chemistry , Sequence Analysis, RNA/methods , Support Vector Machine , Animals , Drosophila/genetics , Humans , Software
16.
BMC Bioinformatics ; 13: 246, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23009561

ABSTRACT

BACKGROUND: Inverted repeat genes encode precursor RNAs characterized by hairpin structures. These RNA hairpins are then metabolized by biosynthetic pathways to produce functional small RNAs. In eukaryotic genomes, short non-autonomous transposable elements can have similar size and hairpin structures as non-coding precursor RNAs. This resemblance leads to problems annotating small RNAs. RESULTS: We mapped all microRNA precursors from miRBASE to several genomes and studied the repetition and dispersion of the corresponding loci. We then searched for repetitive elements overlapping these loci. We developed an automatic method called ncRNAclassifier to classify pre-ncRNAs according to their relationship with transposable elements (TEs). We showed that there is a correlation between the number of scattered occurrences of ncRNA precursor candidates and the presence of TEs. We applied ncRNAclassifier on six chordate genomes and report our findings. Among the 1,426 human and 721 mouse pre-miRNAs of miRBase, we identified 235 and 68 mis-annotated pre-miRNAs respectively corresponding completely to TEs. CONCLUSIONS: We provide a tool enabling the identification of repetitive elements in precursor ncRNA sequences. ncRNAclassifier is available at http://EvryRNA.ibisc.univ-evry.fr.


Subject(s)
Interspersed Repetitive Sequences , Inverted Repeat Sequences , MicroRNAs/genetics , RNA Precursors/chemistry , Software , Animals , Genome , High-Throughput Nucleotide Sequencing , Humans , Mice , MicroRNAs/chemistry , MicroRNAs/classification , RNA Precursors/classification , RNA Precursors/genetics , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/classification , RNA, Small Untranslated/genetics , Rats
17.
Nucleic Acids Res ; 40(11): e80, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22362754

ABSTRACT

miRNAs are small non coding RNA structures which play important roles in biological processes. Finding miRNA precursors in genomes is therefore an important task, where computational methods are required. The goal of these methods is to select potential pre-miRNAs which could be validated by experimental methods. With the new generation of sequencing techniques, it is important to have fast algorithms that are able to treat whole genomes in acceptable times. We developed an algorithm based on an original method where an approximation of miRNA hairpins are first searched, before reconstituting the pre-miRNA structure. The approximation step allows a substantial decrease in the number of possibilities and thus the time required for searching. Our method was tested on different genomic sequences, and was compared with CID-miRNA, miRPara and VMir. It gives in almost all cases better sensitivity and selectivity. It is faster than CID-miRNA, miRPara and VMir: it takes ≈ 30 s to process a 1 MB sequence, when VMir takes 30 min, miRPara takes 20 h and CID-miRNA takes 55 h. We present here a fast ab-initio algorithm for searching for pre-miRNA precursors in genomes, called miRNAFold. miRNAFold is available at http://EvryRNA.ibisc.univ-evry.fr/.


Subject(s)
Algorithms , Genomics/methods , MicroRNAs/chemistry , RNA Precursors/chemistry , Animals , Data Interpretation, Statistical , Humans , Mice , Nucleic Acid Conformation , Software
18.
BMC Bioinformatics ; 11: 474, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20860790

ABSTRACT

BACKGROUND: Most known eukaryotic genomes contain mobile copied elements called transposable elements. In some species, these elements account for the majority of the genome sequence. They have been subject to many mutations and other genomic events (copies, deletions, captures) during transposition. The identification of these transformations remains a difficult issue. The study of families of transposable elements is generally founded on a multiple alignment of their sequences, a critical step that is adapted to transposons containing mostly localized nucleotide mutations. Many transposons that have lost their protein-coding capacity have undergone more complex rearrangements, needing the development of more complex methods in order to characterize the architecture of sequence variations. RESULTS: In this study, we introduce the concept of a transposable element module, a flexible motif present in at least two sequences of a family of transposable elements and built on a succession of maximal repeats. The paper proposes an assembly method working on a set of exact maximal repeats of a set of sequences to create such modules. It results in a graphical view of sequences segmented into modules, a representation that allows a flexible analysis of the transformations that have occurred between them. We have chosen as a demonstration data set in depth analysis of the transposable element Foldback in Drosophila melanogaster. Comparison with multiple alignment methods shows that our method is more sensitive for highly variable sequences. The study of this family and the two other families AtREP21 and SIDER2 reveals new copies of very different sizes and various combinations of modules which show the potential of our method. CONCLUSIONS: ModuleOrganizer is available on the Genouest bioinformatics center at http://moduleorganizer.genouest.org.


Subject(s)
DNA Transposable Elements/genetics , Genome , Animals , Base Sequence , Drosophila melanogaster/genetics , Genetic Variation , Sequence Alignment , Software
19.
Nucleic Acids Res ; 38(7): 2453-66, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20047957

ABSTRACT

Predicting RNA secondary structures is a very important task, and continues to be a challenging problem, even though several methods and algorithms are proposed in the literature. In this article, we propose an algorithm called Tfold, for predicting non-coding RNA secondary structures. Tfold takes as input a RNA sequence for which the secondary structure is searched and a set of aligned homologous sequences. It combines criteria of stability, conservation and covariation in order to search for stems and pseudoknots (whatever their type). Stems are searched recursively, from the most to the least stable. Tfold uses an algorithm called SSCA for selecting the most appropriate sequences from a large set of homologous sequences (taken from a database for example) to use for the prediction. Tfold can take into account one or several stems considered by the user as belonging to the secondary structure. Tfold can return several structures (if requested by the user) when 'rival' stems are found. Tfold has a complexity of O(n(2)), with n the sequence length. The developed software, which offers several different uses, is available on the web site: http://tfold.ibisc.univ-evry.fr/TFold.


Subject(s)
Algorithms , RNA, Untranslated/chemistry , Software , Nucleic Acid Conformation , Sequence Analysis, RNA
20.
Philos Trans A Math Phys Eng Sci ; 366(1878): 3175-97, 2008 Sep 13.
Article in English | MEDLINE | ID: mdl-18565814

ABSTRACT

We present the current state of the development of the SAPHIR project (a Systems Approach for PHysiological Integration of Renal, cardiac and respiratory function). The aim is to provide an open-source multi-resolution modelling environment that will permit, at a practical level, a plug-and-play construction of integrated systems models using lumped-parameter components at the organ/tissue level while also allowing focus on cellular- or molecular-level detailed sub-models embedded in the larger core model. Thus, an in silico exploration of gene-to-organ-to-organism scenarios will be possible, while keeping computation time manageable. As a first prototype implementation in this environment, we describe a core model of human physiology targeting the short- and long-term regulation of blood pressure, body fluids and homeostasis of the major solutes. In tandem with the development of the core models, the project involves database implementation and ontology development.


Subject(s)
Computer Simulation , Models, Biological , Physiology , Acid-Base Equilibrium/physiology , Blood Pressure/physiology , Body Fluids/physiology , Homeostasis , Humans , Knowledge Bases , Models, Cardiovascular , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...