Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 11(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35161437

ABSTRACT

Although plant chlorophyll (Chl) is one of the important elements in monitoring plant stress and reflects the photosynthetic capacity of plants, their measurement in the lab is generally time- and cost-inefficient and based on a small part of the leaf. This study examines the ability of canopy spectral reflectance data for the accurate estimation of the Chl content of two wheat genotypes grown under three salinity levels. The Chl content was quantified as content per area (Chl area, µg cm-2), concentration per plant (Chl plant, mg plant-1), and SPAD value (Chl SPAD). The performance of spectral reflectance indices (SRIs) with different algorithm forms, partial least square regression (PLSR), and stepwise multiple linear regression (SMLR) in estimating the three units of Chl content was compared. Results show that most indices within each SRI form performed better with Chl area and Chl plant and performed poorly with Chl SPAD. The PLSR models, based on the four forms of SRIs individually or combined, still performed poorly in estimating Chl SPAD, while they exhibited a strong relationship with Chl plant followed by Chl area in both the calibration (Cal.) and validation (Val.) datasets. The SMLR models extracted three to four indices from each SRI form as the most effective indices and explained 73-79%, 80-84%, and 39-43% of the total variability in Chl area, Chl plant, and Chl SPAD, respectively. The performance of the various predictive models of SMLR for predicting Chl content depended on salinity level, genotype, season, and the units of Chl content. In summary, this study indicates that the Chl content measured in the lab and expressed on content (µg cm-2) or concentration (mg plant-1) can be accurately estimated at canopy level using spectral reflectance data.

2.
Plants (Basel) ; 10(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34834875

ABSTRACT

The incorporation of stress tolerance indices (STIs) with the early estimation of grain yield (GY) in an expeditious and nondestructive manner can enable breeders for ensuring the success of genotype development for a wide range of environmental conditions. In this study, the relative performance of GY for sixty-four spring wheat germplasm under the control and 15.0 dS m-1 NaCl were compared through different STIs, and the ability of a hyperspectral reflectance tool for the early estimation of GY and STIs was assessed using twenty spectral reflectance indices (SRIs; 10 vegetation SRIs and 10 water SRIs). The results showed that salinity treatments, genotypes, and their interactions had significant effects on the GY and nearly all SRIs. Significant genotypic variations were also observed for all STIs. Based on the GY under the control (GYc) and salinity (GYs) conditions and all STIs, the tested genotypes were classified into three salinity tolerance groups (salt-tolerant, salt-sensitive, and moderately salt-tolerant groups). Most vegetation and water SRIs showed strong relationships with the GYc, stress tolerance index (STI), and geometric mean productivity (GMP); moderate relationships with GYs and sometimes with the tolerance index (TOL); and weak relationships with the yield stability index (YSI) and stress susceptibility index (SSI). Obvious differences in the spectral reflectance curves were found among the three salinity tolerance groups under the control and salinity conditions. Stepwise multiple linear regressions identified three SRIs from each vegetation and water SRI as the most influential indices that contributed the most variation in the GY. These SRIs were much more effective in estimating the GYc (R2 = 0.64 - 0.79) than GYs (R2 = 0.38 - 0.47). They also provided a much accurate estimation of the GYc and GYs for the moderately salt-tolerant genotype group; YSI, SSI, and TOL for the salt-sensitive genotypes group; and STI and GMP for all the three salinity tolerance groups. Overall, the results of this study highlight the potential of using a hyperspectral reflectance tool in breeding programs for phenotyping a sufficient number of genotypes under a wide range of environmental conditions in a cost-effective, noninvasive, and expeditious manner. This will aid in accelerating the development of genotypes for salinity conditions in breeding programs.

3.
J Agric Food Chem ; 69(17): 5167-5177, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33891395

ABSTRACT

The effect of additional dl-methionine (Met) on the thermal degradation of a methionine-glucose-derived Amadori rearrangement product (MG-ARP) was investigated under different reaction conditions. The resulting color formation and changes in the concentrations of MG-ARP, Met, and α-dicarbonyl compounds were investigated. Additional Met did not affect the degradation rate of MG-ARP but got involved in subsequent reactions and resulted in a decrease in the contents of C6-α-dicarbonyl compounds. During MG-ARP degradation, the formation of glyoxal (GO) and methylglyoxal (MGO) was facilitated by additional Met, through retro-aldolization reaction of C6-α-dicarbonyl compounds. This effect of Met addition was dependent on the reaction temperature, and the consistent conclusion could be made in a buffer system. The improvement of GO and MGO formation as color precursors caused by the additional Met contributed to the acceleration of browning formation.


Subject(s)
Maillard Reaction , Methionine , Glucose , Glyoxal , Pyruvaldehyde
4.
Food Res Int ; 140: 109985, 2021 02.
Article in English | MEDLINE | ID: mdl-33648220

ABSTRACT

Maillard reaction intermediates (MRIs) derived from enzymatic hydrolysates of pea protein, mainly initial Maillard reaction products, were prepared at a low temperature (80 °C) and the reaction time was determined by variable-temperature Maillard reaction. Electronic tongue and sensory evaluation were used to analyze the taste qualities of pea protein hydrolysates and their MRIs. Both evaluations showed that bitterness of enzymatic hydrolysates of pea protein reduced but umami taste increased through Maillard reaction. The intensities of umami and saltiness were positively correlated with the concentration of MRIs. Even when the dosage of MRIs was 0.1% (w/w), MRIs could achieve a 20% reduction in NaCl content without decreasing saltiness, which could be great potential substitutes for salt reduction. On the other hand, the increased MRIs promoted aldosterone secretion in saliva, which might enhance human perception of saltiness.


Subject(s)
Maillard Reaction , Pea Proteins , Glycation End Products, Advanced , Humans , Protein Hydrolysates , Taste
5.
Plants (Basel) ; 10(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418974

ABSTRACT

The application of proximal hyperspectral sensing, using simple vegetation indices, offers an easy, fast, and non-destructive approach for assessing various plant variables related to salinity tolerance. Because most existing indices are site- and species-specific, published indices must be further validated when they are applied to other conditions and abiotic stress. This study compared the performance of various published and newly constructed indices, which differ in algorithm forms and wavelength combinations, for remotely assessing the shoot dry weight (SDW) as well as chlorophyll a (Chla), chlorophyll b (Chlb), and chlorophyll a+b (Chlt) content of two wheat genotypes exposed to three salinity levels. Stepwise multiple linear regression (SMLR) was used to extract the most influential indices within each spectral reflectance index (SRI) type. Linear regression based on influential indices was applied to predict plant variables in distinct conditions (genotypes, salinity levels, and seasons). The results show that salinity levels, genotypes, and their interaction had significant effects (p ≤ 0.05 and 0.01) on all plant variables and nearly all indices. Almost all indices within each SRI type performed favorably in estimating the plant variables under both salinity levels (6.0 and 12.0 dS m-1) and for the salt-sensitive genotype Sakha 61. The most effective indices extracted from each SRI type by SMLR explained 60%-81% of the total variability in four plant variables. The various predictive models provided a more accurate estimation of Chla and Chlt content than of SDW and Chlb under both salinity levels. They also provided a more accurate estimation of SDW than of Chl content for salt-tolerant genotype Sakha 93, exhibited strong performance for predicting the four variables for Sakha 61, and failed to predict any variables under control and Chlb for Sakha 93. The overall results indicate that the simple form of indices can be used in practice to remotely assess the growth and chlorophyll content of distinct wheat genotypes under saline field conditions.

6.
Sensors (Basel) ; 20(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213009

ABSTRACT

Proximal hyperspectral sensing tools could complement and perhaps replace destructive traditional methods for accurate estimation and monitoring of various morpho-physiological plant indicators. In this study, we assessed the potential of thermal imaging (TI) criteria and spectral reflectance indices (SRIs) to monitor different vegetative growth traits (biomass fresh weight, biomass dry weight, and canopy water mass) and seed yield (SY) of soybean exposed to 100%, 75%, and 50% of estimated crop evapotranspiration (ETc). These different plant traits were evaluated and related to TI criteria and SRIs at the beginning bloom (R1) and full seed (R6) growth stages. Results showed that all plant traits, TI criteria, and SRIs presented significant variations (p < 0.05) among irrigation regimes at both growth stages. The performance of TI criteria and SRIs for assessment of vegetative growth traits and SY fluctuated when relationships were analyzed for each irrigation regime or growth stage separately or when the data of both conditions were combined together. TI criteria and SRIs exhibited a moderate to strong relationship with vegetative growth traits when data from different irrigation regimes were pooled together at each growth stage or vice versa. The R6 and R1 growth stages are suitable for assessing SY under full (100% ETc) and severe (50% ETc) irrigation regimes, respectively, using SRIs. The overall results indicate that the usefulness of the TI and SRIs for assessment of growth, yield, and water status of soybean under arid conditions is limited to the growth stage, the irrigation level, and the combination between them.


Subject(s)
Agricultural Irrigation/methods , Glycine max/growth & development , Spectrum Analysis , Biomass , Seeds , Water
7.
Plants (Basel) ; 9(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036311

ABSTRACT

Field-based trials and genotype evaluation until yielding stage are two important steps in improving the salt tolerance of crop genotypes and identifying what parameters can be strong candidates for the better understanding of salt tolerance mechanisms in different genotypes. In this study, the salt tolerance of 18 bread wheat genotypes was evaluated under natural saline field conditions and at three saline irrigation levels (5.25, 8.35, and 11.12 dS m-1) extracted from wells. Multidimensional evaluation for salt tolerance of these genotypes was done using a set of agronomic and physio-biochemical attributes. Based on yield index under three salinity levels, the genotypes were classified into four groups ranging from salt-tolerant to salt-sensitive genotypes. The salt-tolerant genotypes exhibited values of total chlorophyll, gas exchange (net photosynthetic rate, transpiration rate, and stomatal conductance), water relation (relative water content and membrane stability index), nonenzymatic osmolytes (soluble sugar, free proline, and ascorbic acid), antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase), K+ content, and K+/Na+ ratio that were greater than those of salt-sensitive genotypes. Additionally, the salt-tolerant genotypes consistently exhibited good control of Na+ and Cl- levels and maintained lower contents of malondialdehyde and electrolyte leakage under high salinity level, compared with the salt-sensitive genotypes. Several physio-biochemical parameters showed highly positive associations with grain yield and its components, whereas negative association was observed in other parameters. Accordingly, these physio-biochemical parameters can be used as individual or complementary screening criteria for evaluating salt tolerance and improvement of bread wheat genotypes under natural saline field conditions.

8.
J Agric Food Chem ; 68(39): 10884-10892, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32902964

ABSTRACT

2-Threityl-thiazolidine-4-carboxylic acid (TTCA) was found to be the predominant product rather than the Amadori rearrangement product (ARP) during the formation of xylose-cysteine-derived (Xyl-Cys-derived) Maillard reaction intermediates (MRIs) through a thermal reaction coupled with vacuum dehydration. To regulate the existence forms of Xyl-Cys-derived MRIs, an effective method carried out by pH adjustment during high-temperature instantaneous dehydration through spray-drying was proposed in this research to promote the conversion from TTCA to ARP. The increased inlet air temperature of spray-drying could properly facilitate the shift of chemical equilibrium between the MRIs and promote the transformation from TTCA to ARP while raising the total yield of TA (TTCA + ARP). The conversion to ARP was increased to 20.83% at 190 °C of hot blast compared to the product without spray-drying (6.03%). The conversion from TTCA to ARP was further facilitated in the pH range of 7.5-9.5. When the pH of the aqueous reactants was adjusted to 9.5, the equilibrium conversion to ARP was improved to 47.23% after spray-drying, which accounted for 59.48% of the TA formation. Accordingly, MRIs with different TTCA/ARP proportions could be selectively obtained by pH adjustment of the stock solution during high-temperature instantaneous dehydration of spray-drying.


Subject(s)
Cysteine/chemistry , Glycation End Products, Advanced/chemistry , Thiazolidines/chemistry , Xylose/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Maillard Reaction , Water/chemistry
9.
Carbohydr Polym ; 235: 115967, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32122501

ABSTRACT

To obtain chitosan (CTS) with narrower molecular weight distribution, CTS with weight-average molecular weight (MW) of 197.30 kDa was first metal complexed and then degraded into five CTSs with MW of 107.90, 56.48, 10.40, 5.67 (CTS-4) and 3.66 kDa. Decrease of MW did not cause a significant change in chemical structure of the residue CTS, but the crystal structure was transformed significantly. The moisture retention increased firstly and then decreased as the MW of CTS decreased. CTS-4 was superior to CTSs with other MW and propylene glycol in terms of the moisture retention. The lower water activity and increase of net isosteric heat were observed in CTS-4, which was due to the migration of immobilized water to a bound-state caused by mounting newly formed chain-end hydrophilic groups per unit weight. CTS-4 could effectively improve moisture retention, showing a potential to substitute commonly used humectant such as propylene glycol.


Subject(s)
Cellulase/metabolism , Chitosan/metabolism , Organometallic Compounds/metabolism , Papain/metabolism , Paper , Polygalacturonase/metabolism , Cellulase/chemistry , Chitosan/chemistry , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Organometallic Compounds/chemistry , Papain/chemistry , Polygalacturonase/chemistry , Water/chemistry , Water/metabolism , Wettability
10.
J Agric Food Chem ; 68(6): 1714-1724, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31957424

ABSTRACT

(-)-Epigallocatechin gallate (EGCG) had a significant effect on Maillard reaction intermediate formation in the xylose/alanine model system. A trapping effect of EGCG on the reactive deoxyosones was observed to change the reaction pathways. The rate constant of Amadori rearrangement product (ARP) conversion to deoxyosones was decreased with EGCG addition, indicating an inhibition of ARP degradation. Dehydration improved the ARP formation during the thermal reaction and synergistically improved the yield of ARP with the EGCG trapping effect on the deoxyosones. Additionally, EGCG decreased the activation energy for the conversion of xylose/alanine to ARP (from 77.8 to 62.8 kJ/mol) and in turn accelerated the ARP formation. The effect of EGCG was further facilitated at the optimal conditions of 90 °C, at pH 7.5, and a molar ratio of xylose to alanine of 2:1, which improved the yield of ARP (N-(1-deoxy-d-xylulos-1-yl)alanine) from 2 to 95%.


Subject(s)
Alanine/analogs & derivatives , Catechin/analogs & derivatives , Catechin/chemistry , Glycation End Products, Advanced/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Maillard Reaction , Xylose/chemistry , Xylulose/chemistry
11.
Int J Biol Macromol ; 147: 667-674, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31931061

ABSTRACT

The moisture stability of tobacco shred, a typical porous carbohydrate material, is very important during its processing, storage and smoking, moreover, it is sensitive to environmental conditions. Therefore, effect of sucrose esters (SEs) and sucrose ester/Polygonatum sibiricum polysaccharide mixture (SPMs) on the moisture retention and moisture resistance of tobacco shred was assessed. When SEs were added to tobacco shred, moisture resistance was significantly enhanced, whereas moisture holding capacity was attenuated. Contrarily, the addition of SPMs made moisture retention index (MRI) and moisture proof index (MPI) increase from 1.8910 to 2.1612 and from 1.9489 to 2.0665, respectively, revealing that SPMs improved the moisture retention and moisture proof ability of tobacco shred simultaneously. The monolayer moisture content (M0) was decreased by SEs and increased by SPMs. Low-field nuclear magnetic resonance (LF-NMR) analysis showed that during adsorption, SPMs reduced the interaction between tobacco shred and water via hydrophobic property of SEs; during desorption, SPMs promoted the interaction between tobacco shred and water through hydrophilic binding of polysaccharide, leading to the migration of immobilized water to bound state. The modeling of the isotherms and LF-NMR analysis clarified the mechanism why SPMs could improve moisture stability of tobacco.


Subject(s)
Carbohydrates/chemistry , Hygroscopic Agents/chemistry , Polysaccharides/chemistry , Water/chemistry , Polygonatum/chemistry , Porosity/drug effects , Sucrose/chemistry
12.
Food Chem ; 311: 125877, 2020 May 01.
Article in English | MEDLINE | ID: mdl-31780222

ABSTRACT

Amadori rearrangement product (ARP) is an ideal flavor precursor. The formation kinetics of ARP from glycine-ribose system, 3-deoxyribosone (3-DR) and 1-deoxyribosone (1-DR) were evaluated, and then controlled thermal reaction (CTR) coupled with vacuum dehydration was proposed to improve the ARP yield. As key factors controlling the formation of byproducts, CTR temperature and time were optimized as 100 °C, 60 min based on the formation kinetics of the ARP and deoxyribosones. Vacuum dehydration was further used to increase the ARP yield from 0.77% to 64.50%, which was improved by 82.8 times, while 3-DR and 1-DR yield increased only by 1.5 and 3.7 times, respectively. The formation of ARP was the dominant reaction during vacuum dehydration. Under optimal conditions, CTR coupled with vacuum dehydration was an effective method to control byproducts formation and improve the ARP yield simultaneously. This method may offer a potential application in flavor enhancement of light-color food.


Subject(s)
Glycine/chemistry , Maillard Reaction , Ribose/chemistry , Kinetics , Temperature , Vacuum , Water/chemistry
13.
J Food Sci ; 84(12): 3584-3593, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31721210

ABSTRACT

Maillard reaction intermediate (MGX) generated from glutathione and xylose in aqueous medium was prepared via the Maillard reaction performed under a two-stage temperature increase process. The purified MGX was identified by Fourier-transform infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance as N-(1-deoxy-d-xylulos-1-yl)-glutathione (Amadori compound, C15 H25 O10 N3 S) with five main isomers. The method of Maillard reaction performed under a two-stage temperature increase process was further verified by high-performance liquid chromatography. The optimal reaction time and temperature for the preparation of MGX was determined as 60 min at 90 °C. The yield of MGX was increased from 8.60% to 55.52% through thermal reaction coupled with vacuum dehydration. In addition, rapid and more Maillard-type volatile compounds were formed in MGX during thermal treatment than that in Maillard reaction products or glutathione-xylose mixture. Beside, MGX possessed more pleasing meat-like volatile profile compared with the Amadori compound of glutamic acid-xylose (AAX), cysteine-xylose (ACX), and glycine-xylose (AGX). Therefore, it suggested that the MGX had the potential to achieve a better flavor formation during thermal treatment. PRACTICAL APPLICATION: Maillard reaction intermediates, such as Amadori or Heyns rearrangement products (ARP or HRP), are important flavor precursors, which possess stable physicochemical properties, but tend to degrade into flavor compounds at high temperatures. Maillard reaction intermediate from glutathione and xylose acts as primary flavor enhancers to complete Maillard reaction to produce flavors in the subsequent thermal processing, which can significantly improve and stabilize the flavor quality of the meaty food, and deserves a very broad application prospects. The new developed method will be a significant theoretical basis on research preparation and properties of Maillard reaction intermediates in complex food systems.


Subject(s)
Glutathione/chemistry , Xylose/chemistry , Cysteine/chemistry , Flavoring Agents/chemistry , Glutamic Acid/chemistry , Glycation End Products, Advanced/chemistry , Glycine/chemistry , Hot Temperature , Maillard Reaction , Vacuum
14.
Sci Rep ; 9(1): 16473, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712701

ABSTRACT

The timely estimation of growth and photosynthetic-related traits in an easy and nondestructive manner using hyperspectral data will become imperative for addressing the challenges of environmental stresses inherent to the agricultural sector in arid conditions. However, the handling and analysis of these data by exploiting the full spectrum remains the determining factor for refining the estimation of crop variables. The main objective of this study was to estimate growth and traits underpinning photosynthetic efficiency of two wheat cultivars grown under simulated saline field conditions and exposed to three salinity levels using hyperspectral reflectance information from 350-2500 nm obtained at two years. Partial least squares regression (PLSR) based on the full spectrum was applied to develop predictive models for estimating the measured parameters in different conditions (salinity levels, cultivars, and years). Variable importance in projection (VIP) of PLSR in combination with multiple linear regression (MLR) was implemented to identify important waveband regions and influential wavelengths related to the measured parameters. The results showed that the PLSR models exhibited moderate to high coefficients of determination (R2) in both the calibration and validation datasets (0.30-0.95), but that this range of R2 values depended on parameters and conditions. The PLSR models based on the full spectrum accurately and robustly predicted three of four parameters across all conditions. Based on the combination of PLSR-VIP and MLR analysis, the wavelengths selected within the visible (VIS), red-edge, and middle near-infrared (NIR) wavebands were the most sensitive to all parameters in all conditions, whereas those selected within the shortwave infrared (SWIR) waveband were effective for some parameters in particular conditions. Overall, these results indicated that the PLSR analysis and band selection techniques can offer a rapid and nondestructive alternative approach to accurately estimate growth- and photosynthetic-related trait responses to salinity stress.


Subject(s)
Computer Simulation , Photosynthesis , Plant Leaves/growth & development , Salinity , Triticum/growth & development , Multivariate Analysis , Salt Tolerance
15.
J Food Sci ; 84(8): 2171-2180, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31313307

ABSTRACT

Amadori rearrangement product (ARP) derived from glutamic acid (Glu) and xylose (Xyl) was prepared by aqueous Maillard reaction. Subsequently, ion exchange chromatography, MS, and NMR were used for purification and identification, confirming that the molecular formula of ARP was C10 H17 NO8 , namely N-(1-deoxy-α-D-xylulos-1-yl)-glutamic acid, with a molecular mass of 279 Da. To improve the aqueous yield of ARP, a thermal reaction coupled with vacuum dehydration was used and the yield of ARP was increased from 2.07% to 75.11%. Furthermore, flavor formation capacity of ARP by a thermal treatment simulated to a baking process was compared with Maillard reaction products, Maillard-dehydration reaction products, and Glu-Xyl mixture. The results indicated that a larger amount of volatile flavor compounds and a biscuit-like, burnt aroma was generated rapidly from the mixture of ARP and unreacted Glu-Xyl, which could be a potential flavor enhancer for baked foods. PRACTICAL APPLICATION: Maillard reaction performed in aqueous medium through thermal reaction combined with vacuum dehydration is a novel and practical technology that could be widely used to produce Maillard reaction intermediates (MRIs), such as Amadori or Heyns rearrangement products, which are regarded as significant nonvolatile aroma precursors and have stable physical and chemical properties compared with Maillard reaction products (MRPs). MRI derived from glutamic acid and xylose is a potential substitute of MRPs for flavorings preparation and shows a great capacity to generate fresh flavors in a short time at high temperature, which meets the requirements of baking foods. Therefore, the new developed method could be a promising tool for MRI preparation and application in food and flavoring industries.


Subject(s)
Flavoring Agents/chemistry , Glutamic Acid/chemistry , Glycation End Products, Advanced/chemistry , Hot Temperature , Maillard Reaction , Odorants/analysis , Taste , Vacuum , Xylose/chemistry
16.
J Agric Food Chem ; 67(31): 8632-8640, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31309828

ABSTRACT

The Maillard reaction under a stepwise increase of temperature using l-cysteine as the indicator was performed to determine the formation conditions for the preparation of 2-threityl-thiazolidine-4-carboxylic acid (TTCA) which was the main Maillard reaction intermediate (MRI) derived from the xylose (Xyl)-cysteine (Cys) model system in aqueous medium. To clarify the indicating mechanism of Cys for the TTCA formation, the thermal model systems of TTCA-Cys and TTCA solutions were investigated. The browning of the final Maillard reaction products (MRPs) and concentration of downstream degradation products of MRIs indicated that the added Cys could react with TTCA to inhibit the formation of visible color via preventing the generation of dicarbonyl compounds derived from MRIs. Through HPLC analysis, it was demonstrated that added Cys affected the normal reaction pathway from TTCA to ARP and other downstream products by restoring TTCA to sugar and amino acid under heat treatment.


Subject(s)
Cysteine/chemistry , Thiazolidines/chemistry , Xylose/chemistry , Chromatography, High Pressure Liquid , Glycation End Products, Advanced/chemistry , Hot Temperature , Maillard Reaction
17.
J Agric Food Chem ; 67(32): 8994-9001, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31347366

ABSTRACT

The effect of simultaneous dehydration-reaction (SDR) on Amadori rearrangement product (ARP) N-(1-deoxy-d-xylulos-1-yl)-glutathione and its key degradation products, 3-deoxyxylosone (3-DX) and 1-deoxyxylosone (1-DX), were investigated in an aqueous glutathione-xylose (GSH-Xyl) system. The yield of ARP was increased to 67.98% by SDR compared with 8.44% by atmospheric thermal reaction at 80 °C. Reaction kinetics was applied to analyze the mechanism and characteristics of ARP formation and degradation under SDR. ARP formation and degradation rate was highly dependent on temperature, and the latter was more sensitive to temperature. By regulating the reaction conditions of temperature and pH, the ratio of ARP formation rate constant to its degradation rate constant could be controlled to achieve an efficient preparation of ARP from GSH-Xyl Maillard reaction through SDR.


Subject(s)
Glutathione/chemistry , Xylose/chemistry , Hydrogen-Ion Concentration , Ketoses/chemistry , Kinetics , Maillard Reaction , Temperature
18.
J Agric Food Chem ; 67(23): 6585-6593, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31124366

ABSTRACT

The inhibitory effects of glutathione (GSH) and oxiglutathione (GSSG) on Maillard browning were compared, and it was clarified that free sulfhydryl was the key substance for the inhibition. The Amadori rearrangement product (ARP) derived from glycylglycine (Gly-Gly) and arabinose (Ara) was prepared by aqueous Maillard reaction, and LC-MS/MS was used to investigate the reaction products of GSH and purified ARP. Reaction between GSH and deoxypentosone (DP) was found to alter the pathway of aqueous Maillard reaction, which reduced the production of glyoxal, methylglyoxal, and furfural and thereby inhibited the formation of melanoidins. To determine the optimal conditions for browning inhibition, a stepwise increase of temperature was used to prepare Maillard reaction products (MRPs). The results showed that the optimum browning inhibitory effect was obtained by adding GSH after Gly-Gly and Ara heating at 80 °C for 60 min.


Subject(s)
Arabinose/chemistry , Glutathione/chemistry , Glycylglycine/chemistry , Pentoses/chemistry , Chromatography, Liquid , Glycation End Products, Advanced/chemistry , Maillard Reaction , Polymers/chemistry , Sulfhydryl Compounds/chemistry , Tandem Mass Spectrometry , Temperature
19.
J Agric Food Chem ; 67(12): 3412-3422, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30827106

ABSTRACT

The formation conditions of the Amadori compound (ARP) N-(1-deoxy-d-xylulos-1-yl)-alanine were determined in an aqueous Maillard reaction between l-alanine and d-xylose under a two-step temperature rising process with (-)-epigallocatechin gallate (EGCG) as an indicator followed by browning intensity detection of the final Maillard reaction products (MRPs). To clarify the mechanism of EGCG indication on the ARP formation, the change in the concentration of some key products generated during the Maillard reaction with EGCG addition was investigated. Results showed an inhibition effect of EGCG on the browning precursor formation through the generation of ARP-EGCG adducts and deoxyosone-EGCG adducts, which was proposed as an important pathway to inhibit browning during the Maillard reaction and to indicate ARP formation.


Subject(s)
Arginine/analogs & derivatives , Catechin/analogs & derivatives , Monosaccharides/chemistry , Alanine/chemistry , Arginine/chemistry , Catechin/chemistry , Glycation End Products, Advanced/chemistry , Maillard Reaction , Temperature , Xylose/chemistry
20.
Toxicol Rep ; 1: 554-561, 2014.
Article in English | MEDLINE | ID: mdl-28962268

ABSTRACT

Imidacloprid (IC) is a systemic insecticide related to the tobacco toxin nicotine. IC is a toxic substance frequently used into combat insects, rodents and plants pests and other creatures that can pose problems for agriculture. We, therefore, planned this study to assess risk factors, biochemical and histological alterations associated with hepatotoxicity and nephrotoxicity. Forty-eight adult male albino mice were divided into four groups of 12 animals each. All the animals were given standard synthetic pellet diet. One group served as control, and the other three were served as experimental groups. Decrease in the body weight of the high dose group was observed at 15 mg/kg/day, and no mortality occurred during the treatment period. High dose of imidacloprid caused a significant elevation of serum clinical chemistry parameters, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvate kinase (SGPT), alkaline phosphatase (ALP) and total bilirubin (TBIL). Histology of liver and kidney indicates hepatotoxicity and nephrotoxicity at a high dose of imidacloprid. Based on the morphological, biochemical and histopathological analysis, it is evident that imidacloprid induced toxicological effects at 15 mg/kg/day to mice. The results of the present study demonstrate that IC had significant effects on body weight, liver functions and kidney (p < 0.05) at a dose of 15 mg/kg body weight. IC treatment 5 and 10 mg/kg/day may be considered as no observed adverse effect level (NOAEL) for mice. It was concluded that IC can cause hepatotoxicity and nephrotoxicity at a dose much lower than the LD50 (131 mg/kg body weight) in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...