Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 15996, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987609

ABSTRACT

Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aß25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aß plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aß25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Glucose Transporter Type 4 , Hypothalamus , Insulin-Like Growth Factor I , Insulin , Physical Conditioning, Animal , Rats, Wistar , Signal Transduction , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/therapy , Insulin-Like Growth Factor I/metabolism , Male , Insulin/metabolism , Rats , Hypothalamus/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Amyloid beta-Peptides/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Hippocampus/metabolism , Hippocampus/drug effects , Administration, Intranasal , Peptide Fragments , Spatial Memory/drug effects , Spatial Learning/drug effects
2.
Int J Dev Neurosci ; 71: 10-17, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30076989

ABSTRACT

The popularity of using wireless fidelity over the last decades increased apprehensions about impact of high frequency electromagnetic fields (EMF) on health. Most of previous studies mentioned adverse effect of EMF on cognitive processes, but so far, no study has provided a way to control adverse effects of EMF exposure. The purpose of this study was to examine the effect of Wi-Fi EMF and physical activity on spatial learning and motor function in pregnant rat's offspring. Forty Albino-Wistar pregnant rats divided randomly into four groups (EMF, physical activity, combined 2.4GHZ EMF and physical activity and control groups). For assessing spatial learning in 56 post-natal days' old (PND) male offspring, Morris Water Maze (MWM) was used and to examine motor function Open-field test was taken. Although results of MWM test revealed that Wi-Fi modem EMF caused impairment in spatial learning in rats exposed to EMF but physical activity could reduce negative effect of EMF in pregnant rat's offspring who exposed during pregnancy but performed swimming. In addition, results of open-field test showed that litter's motor function in EMF group significantly declined in comparison with physical activity and combined 2.4GHZ EMF and physical activity groups. According to our findings, it can be concluded that execution physical activity individually or along with wave-exposed pregnancy can significantly progressive effect on offspring' cognitive and motor functions.


Subject(s)
Electromagnetic Fields/adverse effects , Motor Activity/radiation effects , Physical Conditioning, Animal/methods , Pregnancy/radiation effects , Prenatal Exposure Delayed Effects/prevention & control , Spatial Learning/radiation effects , Analysis of Variance , Animals , Avoidance Learning/physiology , Avoidance Learning/radiation effects , Exploratory Behavior/physiology , Exploratory Behavior/radiation effects , Female , Male , Maze Learning/physiology , Maze Learning/radiation effects , Mental Recall/physiology , Mental Recall/radiation effects , Physical Conditioning, Animal/physiology , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Wistar , Reaction Time/radiation effects , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL