Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 14725, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679451

ABSTRACT

Scree deposits in alpine catchments contain undeveloped till soils that are "hidden" between and under stones. These scree areas have no vegetation except for sparse lichen patches on stone surfaces, but the soils exhibit biological activity and active cycling of nitrogen (N), phosphorus (P), and organic carbon (C). We compared the chemical and biochemical properties of till soils in the scree areas (scree soils) with developed soils in alpine meadows (meadow soils) of 14 catchments in the alpine zone of the Tatra Mountains. The data showed that scree soils served as an important source of mobile P forms for waters in high elevation catchments. We then conducted a detailed soil survey focused on four selected alpine catchments with scree cover proportions > 30%. This study confirmed that scree soils have significantly higher concentrations of mobile P forms compared to meadow soils, and a high specific microbial activity directed towards the extraction of P with rapid turnover in the microbial biomass. The combination of these properties and the amounts of scree soils in high-elevation areas highlight their importance in overall biogeochemical P cycling in alpine catchments, and the terrestrial P export to receiving waters.


Subject(s)
Bicycling , Carbon , Biomass , Phosphorus , Soil
2.
Sci Total Environ ; 903: 166233, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37572919

ABSTRACT

Forest areas infected by insects are increasing in Europe and North America due to accelerating climate change. A 2000-2020 mass budget study on major elements (C, N, P, Ca, Mg, K) in the atmosphere-plant-soil-water systems of two unmanaged catchments enabled us to evaluate changes in pools and fluxes related to tree dieback and long-term accumulation/losses during the post-glacial period. A bark-beetle outbreak killed >75 % of all trees in a mature mountain spruce forest in one catchment and all dead biomass was left on site. A similar forest in a nearby catchment was only marginally affected. We observed that: (1) the long-term (millennial) C and N accumulation in soils averaged 10-22 and 0.5-1.1 kg ha-1 yr-1, respectively, while losses of Ca, Mg, and K from soils ranged from 0.1 to 2.6 kg ha-1 yr-1. (2) Only <0.8 % and <1.5 % of the respective total C and N fluxes entering the soil annually from vegetation were permanently stored in soils. (3) The post-disturbance decomposition of dead tree biomass reduced vegetation element pools from 27 % (C) to 73 % (P) between 2004 and 2019. (4) Tree dieback decreased net atmospheric element inputs to the impacted catchment, and increased the leaching of all elements and gaseous losses of C (∼2.3 t ha-1 yr-1) and N (∼14 kg ha-1 yr-1). The disturbed catchment became a net C source, but ∼50 % of the N released from dead biomass accumulated in soils. (5) Despite the severe forest disturbance, the dissolved losses of Ca and Mg represented 52-58 % of their leaching from intact stands during the peaking atmospheric acidification from 1970 to 1990. (6) Disturbance-related net leaching of P, Ca, Mg, and K were 4, 69, 16, and 114 kg ha-1, respectively, which represented 7-38 % of the losses potentially related to sanitary logging and subsequent removal of the aboveground tree biomass.

3.
FEMS Microbiol Ecol ; 99(8)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37463799

ABSTRACT

Bark beetle disturbances are a critical event in the life cycle of Norway spruce forests. However, our knowledge of their effects on ectomycorrhizal fungi (EMF), which play a key role in forest productivity and nutrient cycling, is still incomplete. Special attention has been paid to the dynamics and diversity of EMF communities in managed forests, but studies dealing with disturbed natural stands are underrepresented. We conducted a study in an unmanaged natural spruce forest in the Bohemian Forest (Czech Republic), which suffered severe forest dieback caused by bark beetle. Approximately a decade after the disturbance, the character of the forest structure in the study area (∼60 ha, 41 study plots) ranged from sites with open canopy and sparse tree cover to areas with dense spruce regeneration to patches of closed-canopy forest. We found that relative EMF abundance in soils was positively related to surviving tree and regeneration density. The number of surviving trees also positively affected species EMF richness and tended to support preservation of late-successional EMF species. Our results suggest that trees that survive bark beetle disturbance are key for the fate of the EMF community in natural forests.

4.
Environ Microbiol ; 25(10): 2049-2053, 2023 10.
Article in English | MEDLINE | ID: mdl-37286495

ABSTRACT

Chronic nitrogen inputs can alleviate N limitation and potentially impose N losses in forests, indicated by soil enrichment in 15 N over 14 N. However, the complexity of the nitrogen cycle hinders accurate quantification of N fluxes. Simultaneously, soil ecologists are striving to find meaningful indicators to characterise the "openness" of the nitrogen cycle. We integrate soil δ15 N with constrained ecosystem N losses and the functional gene potential of the soil microbiome in 14 temperate forest catchments. We show that N losses are associated with soil δ15 N and that δ15 N scales with the abundance of soil bacteria. The abundance of the archaeal amoA gene, representing the first step in nitrification (ammonia oxidation to nitrite), followed by the abundance of narG and napA genes, associated with the first step in denitrification (nitrate reduction to nitrite), explains most of the variability in soil δ15 N. These genes are more informative than the denitrification genes nirS and nirK, which are directly linked to N2 O production. Nitrite formation thus appears to be the critical step associated with N losses. Furthermore, we show that the genetic potential for ammonia oxidation and nitrate reduction is representative of forest soil 15 N enrichment and thus indicative of ecosystem N losses.


Subject(s)
Microbiota , Nitrates , Ammonia , Archaea/genetics , Nitrogen/analysis , Nitrites , Forests , Nitrification , Oxidation-Reduction , Soil , Microbiota/genetics , Soil Microbiology , Denitrification
5.
PLoS One ; 17(8): e0272143, 2022.
Article in English | MEDLINE | ID: mdl-35917373

ABSTRACT

Alpine meadows are strongly affected by climate change. Increasing air temperature prolongs the growing season and together with changing precipitation patterns alters soil temperature during winter. To estimate the effect of climate change on soil nutrient cycling, we conducted a field experiment. We transferred undisturbed plant-soil mesocosms from two wind-exposed alpine meadows at ~2100 m a.s.l. to more sheltered plots, situated ~300-400 m lower in the same valleys. The annual mean air temperature was 2°C higher at the lower plots and soils that were normally frozen at the original plots throughout winters were warmed to ~0°C due to the insulation provided by continuous snow cover. After two years of exposure, we analyzed the nutrient content in plants, and changes in soil bacterial community, decomposition, mineralization, and nutrient availability. Leaching of N and P from the soils was continuously measured using ion-exchange resin traps. Warming of soils to ~0°C during the winter allowed the microorganisms to remain active, their metabolic processes were not restricted by soil freezing. This change accelerated nutrient cycling, as evidenced by increased soil N and P availability, their higher levels in plants, and elevated leaching. In addition, root exudation and preferential enzymatic mining of P over C increased. However, any significant changes in microbial biomass, bacterial community composition, decomposition rates, and mineralization during the growing season were not observed, suggesting considerable structural and functional resilience of the microbial community. In summary, our data suggest that changes in soil temperature and snow cover duration during winter periods are critical for altering microbially-mediated processes (even at unchanged soil microbial community and biomass) and may enhance nutrient availability in alpine meadows. Consequently, ongoing climate change, which leads to soil warming and decreasing snow insulation, has a potential to significantly alter nutrient cycling in alpine and subalpine meadows compared to the current situation and increase the year-on-year variability in nutrient availability and leaching.


Subject(s)
Grassland , Soil , Climate Change , Ecosystem , Plants , Seasons , Snow , Soil/chemistry , Soil Microbiology
6.
Environ Pollut ; 304: 119104, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35301033

ABSTRACT

Tree rings provide valuable insight into past environmental changes. This study aimed to evaluate perturbations in tree ring width (TRW) and δ15N alongside soil acidity and nutrient availability gradients caused by the contrasting legacy of air pollution (nitrogen [N] and sulphur [S] deposition) and tree species (European beech, Silver fir and Norway spruce). We found consistent declines of tree ring δ15N, which were temporarily unrelated to the changes in the TRW. The rate of δ15N change in tree rings was related to the contemporary foliar carbon (C) to phosphorus (P) ratio. This observation suggested that the long-term accumulation of 15N depleted N in tree rings, likely mediated by retained N from deposition, was restricted primarily to stands with currently higher P availability. The shifts observed in tree-ring δ15N and TRW suggest that acidic air pollution rather than changes in stand productivity determined alteration of N and C cycles. Stable N isotopes in tree rings provided helpful information on the trajectory of the N cycle over the last century with direct consequences for a better understanding of future interactions among N, P and C cycles in terrestrial ecosystems.


Subject(s)
Fagus , Picea , Carbon Isotopes/analysis , Ecosystem , Forests , Nitrogen , Nitrogen Isotopes/analysis
7.
FEMS Microbiol Ecol ; 96(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-32815987

ABSTRACT

Anthropogenically enhanced atmospheric sulphur (S) and nitrogen (N) deposition has acidified and eutrophied forest ecosystems worldwide. However, both S and N mechanisms have an impact on microbial communities and the consequences for microbially driven soil functioning differ. We conducted a two-forest stand (Norway spruce and European beech) field experiment involving acidification (sulphuric acid addition) and N (ammonium nitrate) loading and their combination. For 4 years, we monitored separate responses of soil microbial communities to the treatments and investigated the relationship to changes in the activity of extracellular enzymes. We observed that acidification selected for acidotolerant and oligotrophic taxa of Acidobacteria and Actinobacteria decreased bacterial community richness and diversity in both stands in parallel, disregarding their original dissimilarities in soil chemistry and composition of microbial communities. The shifts in bacterial community influenced the stoichiometry and magnitude of enzymatic activity. The bacterial response to experimental N addition was much weaker, likely due to historically enhanced N availability. Fungi were not influenced by any treatment during 4-year manipulation. We suggest that in the onset of acidification when fungi remain irresponsive, bacterial reaction might govern the changes in soil enzymatic activity.


Subject(s)
Fagus , Soil , Bacteria/genetics , Forests , Fungi , Hydrogen-Ion Concentration , Nitrogen/analysis , Norway , Soil Microbiology
8.
Environ Pollut ; 238: 884-893, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29631233

ABSTRACT

Increased reactive nitrogen (N) loadings to terrestrial ecosystems are believed to have positive effects on ecosystem carbon (C) sequestration. Global "hot spots" of N deposition are often associated with currently or formerly high deposition of sulphur (S); C fluxes in these regions might therefore not be responding solely to N loading, and could be undergoing transient change as S inputs change. In a four-year, two-forest stand (mature Norway spruce and European beech) replicated field experiment involving acidity manipulation (sulphuric acid addition), N addition (NH4NO3) and combined treatments, we tested the extent to which altered soil solution acidity or/and soil N availability affected the concentration of soil dissolved organic carbon (DOC), soil respiration (Rs), microbial community characteristics (respiration, biomass, fungi and bacteria abundances) and enzyme activity. We demonstrated a large and consistent suppression of soil water DOC concentration driven by chemical changes associated with increased hydrogen ion concentrations under acid treatments, independent of forest type. Soil respiration was suppressed by sulphuric acid addition in the spruce forest, accompanied by reduced microbial biomass, increased fungal:bacterial ratios and increased C to N enzyme ratios. We did not observe equivalent effects of sulphuric acid treatments on Rs in the beech forest, where microbial activity appeared to be more tightly linked to N acquisition. The only changes in C cycling following N addition were increased C to N enzyme ratios, with no impact on C fluxes (either Rs or DOC). We conclude that C accumulation previously attributed solely to N deposition could be partly attributable to their simultaneous acidification.


Subject(s)
Acid Rain , Carbon Cycle/physiology , Forests , Nitrogen/analysis , Tracheophyta/physiology , Bacteria , Biomass , Carbon/analysis , Ecosystem , Environmental Monitoring , Fagus , Fungi , Norway , Soil , Soil Microbiology , Sulfur
9.
Sci Rep ; 8(1): 4754, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29540779

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Sci Rep ; 7(1): 9738, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851897

ABSTRACT

Nitrogen leaching owing to elevated acid deposition remains the main ecosystem threat worldwide. We aimed to contribute to the understanding of the highly variable nitrate losses observed in Europe after acid deposition retreat. Our study proceeded in adjacent beech and spruce forests undergoing acidification recovery and differing in nitrate leaching. We reconstructed soil microbial functional characteristics connected with nitrogen and carbon cycling based on community composition. Our results showed that in the more acidic spruce soil with high carbon content, where Acidobacteria and Actinobacteria were abundant (Proteo:Acido = 1.3), the potential for nitrate reduction and loss via denitrification was high (denitrification: dissimilative nitrogen reduction to ammonium (DNRA) = 3). In the less acidic beech stand with low carbon content, but high nitrogen availability, Proteobacteria were more abundant (Proteo:Acido = 1.6). Proportionally less nitrate could be denitrified there (denitrification:DNRA = 1), possibly increasing its availability. Among 10 potential keystone species, microbes capable of DNRA were identified in the beech soil while instead denitrifiers dominated in the spruce soil. In spite of the former acid deposition impact, distinct microbial functional guilds developed under different vegetational dominance, resulting in different N immobilization potentials, possibly influencing the ecosystem's nitrogen retention ability.


Subject(s)
Bacteria/metabolism , Denitrification , Fagus/growth & development , Microbiota , Picea/growth & development , Soil Microbiology , Soil/chemistry , Bacteria/classification , Europe , Hydrogen-Ion Concentration , Nitrates/analysis
11.
PLoS One ; 10(7): e0134165, 2015.
Article in English | MEDLINE | ID: mdl-26230678

ABSTRACT

Mountain forests in National park Bohemian Forest (Czech Republic) were affected by bark beetle attack and windthrows in 2004-2008, followed by an extensive tree dieback. We evaluated changes in the biochemistry of the uppermost soil horizons with the emphasis on carbon (C) and nitrogen (N) cycling in a near-natural spruce (Picea abies) mountain forest after the forest dieback, and compared it with an undisturbed control plot of similar age, climate, elevation, deposition, N-saturation level, and land use history. We hypothesised that the high litter input after forest dieback at the disturbed plot and its consequent decomposition might influence the availability of C for microorganisms, and consequently, N transformations in the soil. The concentrations of dissolved organic C (DOC) and N (DON) in soil water extracts rapidly increased at the disturbed plot for 3 yeas and then continually decreased. Net ammonification exhibited a similar trend as DOC and DON, indicating elevated mineralization. Despite the high ammonium concentrations found after the forest dieback (an increase from 0.5 mmol kg-1 to 2-3 mmol kg-1), net nitrification was stable and low during these 3 years. After the DOC depletion and decrease in microbial biomass 5 years after the forest dieback, net nitrification started to rise, and nitrate concentrations increased from 0.2-1 mmol kg-1 to 2-3 mmol kg-1. Our results emphasize the key role of the availability of organic C in microbial N transformations, which probably promoted microbial heterotrophic activity at the expense of slow-growing nitrifiers.


Subject(s)
Carbon/metabolism , Coleoptera/physiology , Nitrogen/metabolism , Picea/metabolism , Animals , Coleoptera/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...