Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 154(3): 1628-1639, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37702434

ABSTRACT

The seat-dip effect (SDE) occurs when low-frequency sounds propagate through the seating area of a performance space. The physical aspects governing the effect still puzzle acousticians mostly due to the large variety of seating configurations. In this study, the SDE is investigated in three parameterized hall models using the finite-difference time-domain method to simulate a large number of seat configurations in order to quantify the contribution of different geometric properties related to the seating area. The results show that the step size defining the inclination angle of the seating area and the opening underneath the seats (or underpass) are significant factors contributing to the SDE, whereas the stage height and the source position are found to be less important. The results also demonstrate that with an underpass greater than the step size, the first frequency dip occurring between 80 and 100 Hz is mitigated regardless of the hall type considered. The phenomenon is also found to be predominant in the early part of the room response. Visualizations of spatial and time-frequency evolution in the halls are also provided for the cases where the seat properties are found to visibly affect the magnitude spectrum.

2.
J Acoust Soc Am ; 141(3): 1560, 2017 03.
Article in English | MEDLINE | ID: mdl-28372127

ABSTRACT

In concert halls, the spectrum of direct sound (here 0 to 15 ms) is influenced by the seat-dip effect that causes selective low frequency attenuation. The seat-dip effect has been considered to be detrimental to the acoustic quality of halls, yet there is little evidence about the perceptual significance of the effect. This paper studies the discrimination and preference of seat-dip effect related changes in the direct sound, with realistic auralization of multichannel anechoic orchestra recordings in halls measured with the loudspeaker orchestra. Comparisons are made with a free-field direct sound and direct sound magnitude changes typically associated with the seat-dip effect. Overall, the differences were not significantly audible, except with a subgroup of participants in one out of four halls, and two out of three comparisons. Furthermore, participants' preference for the uncolored direct sound was significant in the halls with less reflected energy, but non-significant in the halls with more reflected energy. The results imply that for most seats in adequately reverberant halls, typical seat-dip effect related coloration in the direct sound can be perceptually negligible.


Subject(s)
Acoustics , Auditory Perception , Facility Design and Construction/methods , Music , Acoustic Stimulation , Adult , Discrimination, Psychological , Humans , Male , Motion , Sound , Time Factors , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL