Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 12(2): 2254415, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37671453

ABSTRACT

Staphylococcus aureus is a major human pathogen responsible for a wide range of clinical infections. SaeRS is one of the two-component systems in S. aureus that modulate multiple virulence factors. Although SaeR is required for S. aureus to develop an infection, inhibitors have not been reported. Using an in vivo knockdown method, we demonstrated that SaeR is targetable for the discovery of antivirulence agent. HR3744 was discovered through a high-throughput screening utilizing a GFP-Lux dual reporter system driven by saeP1 promoter. The antivirulence efficacy of HR3744 was tested using Western blot, Quantitative Polymerase Chain Reaction, leucotoxicity, and haemolysis tests. In electrophoresis mobility shift assay, HR3744 inhibited SaeR-DNA probe binding. WaterLOGSY-NMR test showed HR3744 directly interacted with SaeR's DNA-binding domain. When SaeR was deleted, HR3744 lost its antivirulence property, validating the target specificity. Virtual docking and mutagenesis were used to confirm the target's specificity. When Glu159 was changed to Asn, the bacteria developed resistance to HR3744. A structure-activity relationship study revealed that a molecule with a slight modification did not inhibit SaeR, indicating the selectivity of HR3744. Interestingly, we found that SAV13, an analogue of HR3744, was four times more potent than HR3744 and demonstrated identical antivirulence properties and target specificity. In a mouse bacteraemia model, both HR3744 and SAV13 exhibited in vivo effectiveness. Collectively, we identified the first SaeR inhibitor, which exhibited in vitro and in vivo antivirulence properties, and proved that SaeR could be a novel target for developing antivirulence drugs against S. aureus infections.


Subject(s)
Bacteremia , Staphylococcal Infections , Humans , Animals , Mice , Staphylococcus aureus/genetics , Staphylococcal Infections/drug therapy , Blotting, Western , Disease Models, Animal
2.
Antibiotics (Basel) ; 11(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35740225

ABSTRACT

Staphylococcus aureus can cause a plethora of life-threatening infections. Antibiotics have been extensively used to treat S. aureus infections. However, when antibiotics are used at sub-inhibitory concentrations, especially for ß-lactam antibiotics, they may enhance staphylococcal pathogenicity and exacerbate the infection. The combination of antivirulence agents and antibiotics may be a novel approach to controlling antibiotic-induced S. aureus pathogenicity. We have illustrated that under in vitro conditions, antivirulence agent M21, when administered concurrently with ampicillin, suppressed the expression and production of virulence factors induced by ampicillin. In a mouse peritonitis model, M21 reduced bacterial load irrespective of administration of ampicillin. In a bacteremia model, combinatorial treatment consisting of ampicillin or ceftazidime and M21 increased the survival rate of mice and reduced cytokine abundance, suggesting the suppression of antibiotic-induced virulence by M21. Different from traditional antibiotic adjuvants, an antivirulence agent may not synergistically inhibit bacterial growth in vitro, but effectively benefit the host in vivo. Collectively, our findings from this study demonstrated the benefits of antivirulence-antibiotic combinatorial treatment against S. aureus infections and provide a new perspective on the development of antibiotic adjuvants.

3.
Microbiol Spectr ; 10(4): e0064022, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35758685

ABSTRACT

Antibiotics are widely used for the treatment of bacterial infections. However, injudicious use of antibiotics based on an empirical method may lead to the emergence of resistant strains. Despite appropriate administration of antibiotics, their concentrations may remain subinhibitory in the body, due to individual variations in tissue distribution and metabolism rates. This may promote bacterial virulence and complicate the treatment strategies. To investigate whether the administration of certain classes of antibiotics will induce bacterial virulence and worsen the infection under in vivo conditions. Different classes of antibiotics were tested in vitro for their ability to induce virulence in a methicillin-resistant S. aureus strain Mu3 and clinical isolates. Antibiotic-induced pathogenicity was assessed in vivo using mouse peritonitis and bacteremia models. In vitro, ß-lactam antibiotics and tetracyclines induced the expression of multiple surface-associated virulence factors as well as the secretion of toxins. In peritonitis and bacteremia models, mice infected with MRSA and treated with ampicillin, ceftazidime, or tetracycline showed enhanced bacterial pathogenicity. The release of induced virulence factors in vivo was confirmed in a histological examination. Subinhibitory concentrations of antibiotics belonging to ß-lactam and tetracycline aggravated infection by inducing staphylococcal virulence in vivo. Thus, when antibiotics are required, it is preferable to employ combination therapy and to initiate the appropriate treatment plan, following diagnosis. Our findings emphasize the risks associated with antibiotic-based therapy and underline the need for alternative therapeutic options. IMPORTANCE Antibiotics are widely applied to treat infectious diseases. Empirically treatment with incorrect antibiotics, or even correct antibiotics always falls into subinhibitory concentrations, due to dosing, distribution, or secretion. In this study, we have systematically evaluated in vitro virulence induction effect of antibiotics and in vivo exacerbated infection. The major highlight of this work is to prove the ß-lactam and tetracyclines antibiotics exacerbated disease is due to their induction effect on staphylococcal virulence. This phenomenon is common and suggests that if ß-lactam antibiotics remain the first line of defense during empirical therapy, we either need to increase patient reliability or the treatment approach may improve in the future when paired with anti-virulence drugs.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Peritonitis , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Bacteremia/drug therapy , Mice , Microbial Sensitivity Tests , Peritonitis/drug therapy , Reproducibility of Results , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Tetracycline/pharmacology , Virulence Factors , beta-Lactams/pharmacology
4.
J Biol Chem ; 292(47): 19503-19520, 2017 11 24.
Article in English | MEDLINE | ID: mdl-28972161

ABSTRACT

Cytotoxin-producing Klebsiella oxytoca is the causative agent of antibiotic-associated hemorrhagic colitis (AAHC). Recently, the cytotoxin associated with AAHC was identified as tilivalline, a known pentacyclic pyrrolobenzodiazepine (PBD) metabolite produced by K. oxytoca Although this assertion of tilivalline's role in AAHC is supported by evidence from animal experiments, some key aspects of this finding appear to be incompatible with toxicity mechanisms of known PBD toxins. We therefore hypothesized that K. oxytoca may produce some other uncharacterized cytotoxins. To address this question, we investigated whether tilivalline alone is indeed necessary and sufficient to induce cytotoxicity or whether K. oxytoca also produces other cytotoxins. LC-MS- and NMR-based metabolomic analyses revealed the presence of an abundant tricyclic PBD, provisionally designated kleboxymycin, in the supernatant of toxigenic K. oxytoca strains. Moreover, by generating multiple mutants with gene deletions affecting tilivalline biosynthesis, we show that a tryptophanase-deficient, tilivalline-negative K. oxytoca mutant induced cytotoxicity in vitro similar to tilivalline-positive K. oxytoca strains. Furthermore, synthetic kleboxymycin exhibited greater than 9-fold higher cytotoxicity than tilivalline in TC50 cell culture assays. We also found that the biosynthetic pathways for kleboxymycin and tilivalline appear to overlap, as tilivalline is an indole derivative of kleboxymycin. In summary, our results indicate that tilivalline is not essential for inducing cytotoxicity observed in K. oxytoca-associated AAHC and that kleboxymycin is a tilivalline-related bacterial metabolite with even higher cytotoxicity.


Subject(s)
Apoptosis/drug effects , Benzodiazepinones/pharmacology , Cytotoxins/pharmacology , Enterocolitis, Pseudomembranous/pathology , Klebsiella oxytoca/metabolism , Laryngeal Neoplasms/pathology , Anti-Bacterial Agents/adverse effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/pathology , Enterocolitis, Pseudomembranous/chemically induced , Enterocolitis, Pseudomembranous/microbiology , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella oxytoca/drug effects , Laryngeal Neoplasms/drug therapy , Laryngeal Neoplasms/microbiology , Peptides/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...