Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(8): e29459, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38699706

ABSTRACT

The aim of this study is to explore the pharmacological properties of the essential oil derived from Ptychotis verticillata Duby (PVEO), a medicinal plant native to Morocco, focusing on its antidiabetic, anti-tyrosinase, and anti-inflammatory effects. Additionally, the study aims to characterize the phytochemical composition of PVEO and evaluate its potential as a natural therapeutic alternative for various health conditions. To achieve this, phytochemical analysis was conducted using gas chromatography-mass spectrometry (GC-MS). Furthermore, in vitro assessments were conducted to investigate PVEO's antidiabetic activity by inhibiting α-amylase, xanthine oxidase, and α-glucosidase. Tests were also undertaken to evaluate the anti-inflammatory effect of PVEO on RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as its efficacy as an anti-tyrosinase agent and its lipoxygenase inhibition activity. The results of the phytochemical analysis revealed that PVEO is rich in terpene compounds, with percentages of 40.35 % γ-terpinene, 22.40 % carvacrol, and 19.77 % ß-cymene. Moreover, in vitro evaluations demonstrated that PVEO exhibits significant inhibitory activity against α-amylase, xanthine oxidase, and α-glucosidase, indicating promising antidiabetic, and anti-gout potential. Furthermore, PVEO showed significant anti-tyrosinase activity, with an IC50 of 27.39 ± 0.44 µg/mL, and remarkable lipoxygenase inhibition (87.33 ± 2.6 %), suggesting its candidacy for dermatoprotection. Additionally, PVEO displayed a dose-dependent capacity to attenuate the production of NO and PGE2, two inflammatory mediators implicated in various pathologies, without compromising cellular viability. The findings of this study provide a solid foundation for future research on natural therapies and the development of new drugs, highlighting the therapeutic potential of PVEO in the treatment of gout, diabetes, pigmentation disorders, and inflammation.

2.
Front Chem ; 12: 1383731, 2024.
Article in English | MEDLINE | ID: mdl-38660570

ABSTRACT

Introduction: This study investigates the biological activities of Lavandula pinnata essential oil (LPEO), an endemic lavender species from the Canary Islands, traditionally used in treating various ailments. Methods: LPEO was extracted by hydrodistillation and analyzed using GC-MS. Antioxidant activity was assessed by DPPH radical scavenging and total antioxidant capacity assays. Antimicrobial activity was evaluated by disc diffusion, MIC, MBC, and MFC determination against bacterial (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa) and fungal (Candida glabrata, Rhodotorula glutinis, Aspergillus niger, Penicillium digitatum) strains. Antidiabetic and anti-gout potential were investigated through α-amylase, α-glucosidase, and xanthine oxidase inhibition assays. Antityrosinase activity was determined using a modified dopachrome method. Cytotoxicity was assessed by MTT assay against breast (MCF-7, MDA-MB-468), liver (HepG2), colon (HCT-15) cancer cells, and normal cells (PBMCs). Results and discussion: LPEO exhibits potent antiradical activity (IC50 = 148.33 ± 2.48 µg/mL) and significant antioxidant capacity (TAC = 171.56 ± 2.34 µg AA/mg of EO). It demonstrates notable antibacterial activity against four strains (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa) with inhibition zones ranging from 18.70 ± 0.30 mm to 29.20 ± 0.30 mm, along with relatively low MIC and MBC values. LPEO displays significant antifungal activity against four strains (Candida glabrata, Rhodotorula glutinis, Aspergillus niger, and Penicillium digitatum) with a fungicidal effect at 1 mg/mL, surpassing the positive control (cycloheximide), and MIC and MFC values indicating a fungicidal effect. It exhibits substantial inhibition of xanthine oxidase enzyme (IC50 = 26.48 ± 0.90 µg/mL), comparable to allopurinol, and marked inhibitory effects on α-amylase (IC50 = 31.56 ± 0.46 µg/mL) and α-glucosidase (IC50 = 58.47 ± 2.35 µg/mL) enzymes.The enzyme tyrosinase is inhibited by LPEO (IC50 = 29.11 ± 0.08 mg/mL). LPEO displays moderate cytotoxic activity against breast, liver, and colon cancer cells, with low toxicity towards normal cells (PBMC). LPEO exhibits greater selectivity than cisplatin for breast (MCF-7) and colon (HCT-15) cancer cells but lower selectivity for liver (HepG2) and metastatic breast (MDA-MB-468) cancer cells. These findings suggest the potential of LPEO as an antioxidant, antimicrobial, anti-gout, antidiabetic, and anticancer agent.

3.
Med Chem ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659270

ABSTRACT

INTRODUCTION: Inflammatory Bowel Disease (IBD) encompasses a group of chronic disorders distinguished by inflammation of the gastrointestinal tract. Among these, Crohn's Disease (CD) stands out as a complex and impactful condition due to challenges for both diagnosis and management, making it a cynosure of research. METHOD: In CD, there is the predominance of proinflammatory bacteria, including the Adherentinvasive Escherichia coli (AIEC) with virulence-associated metabolic enzyme Propanediol Dehydratase (pduC), which has been identified as a therapeutic target for the management of CD. Herein, molecular modeling techniques, including molecular docking, Molecular Mechanics with Generalized Born and Surface Area (MMGBSA), drug-likeness, and pharmacokinetics profiling, were utilized to probe the potentials of eighty antibacterial compounds to serve as inhibitors of pduC. RESULT: The results of this study led to the identification of five compounds with promising potentials; the results of the molecular docking simulation revealed the compounds as possessing better binding affinities for the target compared to the standard drug (sulfasalazine), while Lipinski's rule of five-based assessment of their drug-likeness properties revealed them as potential oral drugs. MMGBSA free energy calculation and Molecular Dynamics (MD) simulation of the complexes formed a sequel to molecular docking, revealing the compounds as stable binders in the active site of the protein. CONCLUSION: Ultimately, the results of this study have revealed five compounds to possess the potential to serve as inhibitors of pduC of AIEC. However, experimental studies are still needed to validate the findings of this study.

4.
ChemistryOpen ; : e202300243, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528316

ABSTRACT

In this work, we sought to validate the use of Euphorbia calyptrata (L.), a Saharan and Mediterranean medicinal plant, in traditional pharmacopeia. GC-MS/MS identified volatile compounds of potential therapeutic interest. Antioxidant tests were performed using ß-carotene decolorization, DPPH radical scavenging, FRAP, beta-carotene bleaching, and TAC. The antimicrobial activity was evaluated on solid and liquid media for bacterial and fungal strains to determine the zone of inhibition and the minimum growth concentration (MIC) of the microbes tested. The hemolytic activity of these essential oils was assessed on red blood cells isolated from rat blood. Phytochemical characterization of the terpenic compounds by GC-MS/MS revealed 31 compounds, with alpha-Pinene dominating (35.96 %). The antioxidant power of the essential oils tested revealed an IC50 of 67.28 µg/mL (DPPH), EC50 of 80.25.08±1.42 µg/mL (FRAP), 94.83±2.11 µg/mL (beta carotene) and 985.07±0.70 µg/mL (TAC). Evaluating solid media's antibacterial and antifungal properties revealed a zone of inhibition between 10.28 mm and 25.80 mm and 31.48 and 34.21 mm, respectively. On liquid media, the MIC ranged from 10.27 µg/mL to 24.91 µg/mL for bacterial strains and from 9.32 µg/mL to 19.08 µg/mL for fungal strains. In molecular docking analysis, the compounds naphthalene, shogunal, and manol oxide showed the greatest activity against NADPH oxidase, with Glide G scores of -5.294, -5.218 and -5.161 kcal/mol, respectively. For antibacterial activity against E. coli beta-ketoacyl-[acyl carrier protein] synthase, the most potent molecules were cis-Calamenene, alpha.-Muurolene and Terpineol, with Glide G-scores of -6.804, -6.424 and -6.313 kcal/mol, respectively. Hemolytic activity revealed a final inhibition of 9.42±0.33 % for a 100 µg/mL concentration. The essential oils tested have good antioxidant, antimicrobial, and hemolytic properties thanks to their rich phytochemical composition, and molecular docking analysis confirmed their biological potency.

5.
Front Chem ; 12: 1334028, 2024.
Article in English | MEDLINE | ID: mdl-38435667

ABSTRACT

Cistus albidus: L., also known as Grey-leaved rockrose and locally addressed as stab or tûzzâla lbîda, is a plant species with a well-established reputation for its health-promoting properties and traditional use for the treatment of various diseases. This research delves into exploring the essential oil extracted from the aerial components of Cistus albidus (referred to as CAEO), aiming to comprehend its properties concerning antioxidation, anti-inflammation, antimicrobial efficacy, and cytotoxicity. Firstly, a comprehensive analysis of CAEO's chemical composition was performed through Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, four complementary assays were conducted to assess its antioxidant potential, including DPPH scavenging, ß-carotene bleaching, ABTS scavenging, and total antioxidant capacity assays. The investigation delved into the anti-inflammatory properties via the 5-lipoxygenase assay and the antimicrobial effects of CAEO against various bacterial and fungal strains. Additionally, the research investigated the cytotoxic effects of CAEO on two human breast cancer subtypes, namely, MCF-7 and MDA-MB-231. Chemical analysis revealed camphene as the major compound, comprising 39.21% of the composition, followed by α-pinene (19.01%), bornyl acetate (18.32%), tricyclene (6.86%), and melonal (5.44%). Notably, CAEO exhibited robust antioxidant activity, as demonstrated by the low IC50 values in DPPH (153.92 ± 4.30 µg/mL) and ß-carotene (95.25 ± 3.75 µg/mL) assays, indicating its ability to counteract oxidative damage. The ABTS assay and the total antioxidant capacity assay also confirmed the potent antioxidant potential with IC50 values of 120.51 ± 3.33 TE µmol/mL and 458.25 ± 3.67 µg AAE/mg, respectively. In terms of anti-inflammatory activity, CAEO displayed a substantial lipoxygenase inhibition at 0.5 mg/mL. Its antimicrobial properties were broad-spectrum, although some resistance was observed in the case of Escherichia coli and Staphylococcus aureus. CAEO exhibited significant dose-dependent inhibitory effects on tumor cell lines in vitro. Additionally, computational analyses were carried out to appraise the physicochemical characteristics, drug-likeness, and pharmacokinetic properties of CAEO's constituent molecules, while the toxicity was assessed using the Protox II web server.

6.
Chem Biodivers ; 21(3): e202301890, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38252073

ABSTRACT

In this investigation, the study focused on the chemical constitution and the antioxidative as well as anti-inflammatory characteristics of oils and pulpy variants (Imatchan (IM), Harmocha (HA), and Aknari (AK)) sourced from O. dillenii. This inquiry encompassed both in vitro and in silico analyses. High-performance liquid chromatography (HPLC) was employed to ascertain the phenolic constituents, while gas chromatography-mass spectrometry (GC-MS) methodologies. were applied to discern the volatile makeup. The appraisal of antioxidant potential was conducted via the deployment of assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and ferric ion chelating (FIC) techniques. The anti-inflammatory activity was examined using BSA and LOX. Molecular docking methods assessed the antioxidant and anti-inflammatory properties. According to HPLC findings, the most abundant compounds detected in AKO and IMO cultivars were quercetin 3-O-ß-D-glucoside followed by vanillic acid, ferulic acid and tyrolsol. Concerning headspace GC-MS analysis E-11-hexadecenal and (E)-2-undecenal contribute to the major compounds detected in Opuntia HA, IM, and AK pulp and oil. The DPPH IC50 for AK, HA and IM were 38.41±1.54, 42.24±0.29 and 15.17±1.28 mg/mL, respectively. The FRAP IC50 capacity of AK, HA and IM was determined to be 30.23±0.6, 55.96±0.08 and 23.41±1.83 mg/mL, respectively. AK, HA and IM displayed significant FIC activity, with IC50 values of 42.75±0.63, 39.54±0.59 and 35.31±1.38 mg/mL, respectively. The AK, HA and IM O. dillenii oils were effective in their anti-inflammatory activity. Molecular docking of O. dillenii oils phenolic compounds was conducted to determine the possible targeted proteins by the phenolic compounds in O. dillenii's compounds. Overall, these fruits demonstrated the potential for new ingredients for culinary or pharmaceutical applications, providing value to these natural species that can flourish in arid conditions.


Subject(s)
Antioxidants , Opuntia , Antioxidants/pharmacology , Antioxidants/chemistry , Opuntia/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Phenols/pharmacology , Oils
7.
Life (Basel) ; 13(11)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-38004275

ABSTRACT

Juncus acutus, acknowledged through its indigenous nomenclature "samar", is part of the Juncaceae taxonomic lineage, bearing considerable import as a botanical reservoir harboring conceivable therapeutic attributes. Its historical precedence in traditional curative methodologies for the alleviation of infections and inflammatory conditions is notable. In the purview of Eastern traditional medicine, Juncus species seeds find application for their remedial efficacy in addressing diarrhea, while the botanical fruits are subjected to infusion processes targeting the attenuation of symptoms associated with cold manifestations. The primary objective of this study was to unravel the phytochemical composition of distinct constituents within J. acutus, specifically leaves (JALE) and roots (JARE), originating from the indigenous expanse of the Nador region in northeastern Morocco. The extraction of plant constituents was executed utilizing an ethanol-based extraction protocol. The subsequent elucidation of chemical constituents embedded within the extracts was accomplished employing analytical techniques based on high-performance liquid chromatography (HPLC). For the purpose of in vitro antioxidant evaluation, a dual approach was adopted, encompassing the radical scavenging technique employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the total antioxidant capacity (TAC) assay. The acquired empirical data showcase substantial radical scavenging efficacy and pronounced relative antioxidant activity. Specifically, the DPPH and TAC methods yielded values of 483.45 ± 4.07 µg/mL and 54.59 ± 2.44 µg of ascorbic acid (AA)/mL, respectively, for the leaf extracts. Correspondingly, the root extracts demonstrated values of 297.03 ± 43.3 µg/mL and 65.615 ± 0.54 µg of AA/mL for the DPPH and TAC methods. In the realm of antimicrobial evaluation, the assessment of effects was undertaken through the agar well diffusion technique. The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration were determined for each extract. The inhibitory influence of the ethanol extracts was observed across bacterial strains including Staphylococcus aureus, Micrococcus luteus, and Pseudomonas aeruginosa, with the notable exception of Escherichia coli. However, fungal strains such as Candida glabrata and Rhodotorula glutinis exhibited comparatively lower resistance, whereas Aspergillus niger and Penicillium digitatum exhibited heightened resistance, evincing negligible antifungal activity. An anticipatory computational assessment of pharmacokinetic parameters was conducted, complemented by the application of the Pro-tox II web tool to delineate the potential toxicity profile of compounds intrinsic to the studied extracts. The culmination of these endeavors underpins the conceivable prospects of the investigated extracts as promising candidates for oral medicinal applications.

8.
Plants (Basel) ; 12(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836118

ABSTRACT

Throughout history, essential oils have been employed for their pleasing scents and potential therapeutic benefits. These oils have shown promise in various areas, including aromatherapy, personal care products, natural remedies, and even as alternatives to traditional cleaning agents or pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacterial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr. et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in the identified compounds. α-thujone emerged as the predominant volatile component in the oils, making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50 of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM AAE/mg. Additionally, the oils' effectiveness against four bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the exception of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds, we employed computational methods, specifically molecular docking. This technique involved studying the interactions between these compounds and established protein targets associated with antioxidant, antibacterial, and antifungal activities.

9.
Life (Basel) ; 13(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511960

ABSTRACT

Breast cancer is a disease characterized by the uncontrolled proliferation of malignant cells in breast tissue, and oxidative stress activated by an accumulation of reactive oxygen species (ROS) is associated with its development and progression. Essential oils from medicinal plants, known for their antioxidant and therapeutic properties, are being explored as alternatives. Ptychotis verticillata, also known as Nûnkha, is a medicinal plant native to Morocco, belonging to the Apiaceae family, and used for generations in traditional medicine. This study focuses on the phytochemical characterization of P. verticillata essential oil (PVEO) from the province of Oujda, Morocco, for its therapeutic properties. The essential oil was obtained by hydro-distillation, and its volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of various aromatic and terpene compounds, with carvacrol being the most abundant compound. PVEO showed antioxidant properties in several tests, including ß-carotene bleaching, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and total antioxidant capacity (TAC). It also demonstrated cytotoxicity against MCF-7 and MDA-MB-231 breast cancer cell lines, with higher selectivity for MDA-MB-231. The results reveal that Ptychotis verticillata essential oil (PVEO) could be a promising natural alternative for the treatment of breast cancer.

10.
Life (Basel) ; 13(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37374175

ABSTRACT

The mastic tree, scientifically known as Pistacia lentiscus, which belongs to the Anacardiaceae family, was used in this study. The aim of this research was to analyze the chemical composition of this plant and assess its antioxidant and antibacterial properties using both laboratory experiments and computer simulations through molecular docking, a method that predicts the binding strength of a small molecule to a protein. The soxhlet method (SE) was employed to extract substances from the leaves of P. lentiscus found in the eastern region of Morocco. Hexane and methanol were the solvents used for the extraction process. The n-hexane extract was subjected to gas chromatography-mass spectrometry (GC/MS) to identify its fatty acid content. The methanolic extract underwent high-performance liquid chromatography with a diode-array detector (HPLC-DAD) to determine the presence of phenolic compounds. Antioxidant activity was assessed using the DPPH spectrophotometric test. The findings revealed that the main components in the n-hexane extract were linoleic acid (40.97 ± 0.33%), oleic acid (23.69 ± 0.12%), and palmitic acid (22.83 ± 0.10%). Catechin (37.05 ± 0.15%) was identified as the predominant compound in the methanolic extract through HPLC analysis. The methanolic extract exhibited significant DPPH radical scavenging, with an IC50 value of 0.26 ± 0.14 mg/mL. The antibacterial activity was tested against Staphylococcus aureus, Listeria innocua, and Escherichia coli, while the antifungal activity was evaluated against Geotrichum candidum and Rhodotorula glutinis. The P. lentiscus extract demonstrated notable antimicrobial effects. Additionally, apart from molecular docking, other important factors, such as drug similarity, drug metabolism and distribution within the body, potential adverse effects, and impact on bodily systems, were considered for the substances derived from P. lentiscus. Scientific algorithms, such as Prediction of Activity Spectra for Substances (PASS), Absorption, Distribution, Metabolism, Excretion (ADME), and Pro-Tox II, were utilized for this assessment. The results obtained from this research support the traditional medicinal usage of P. lentiscus and suggest its potential for drug development.

11.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37375787

ABSTRACT

The botanical species Ceratonia siliqua L., commonly referred to as the Carob tree, and locally as "L'Kharrûb", holds significance as an agro-sylvo-pastoral species, and is traditionally utilized in Morocco for treating a variety of ailments. This current investigation aims to ascertain the antioxidant, antimicrobial, and cytotoxic properties of the ethanolic extract of C. siliqua leaves (CSEE). Initially, we analyzed the chemical composition of CSEE through high-performance liquid chromatography with Diode-Array Detection (HPLC-DAD). Subsequently, we conducted various assessments, including DPPH scavenging capacity, ß-carotene bleaching assay, ABTS scavenging, and total antioxidant capacity assays to evaluate the antioxidant activity of the extract. In this study, we investigated the antimicrobial properties of CSEE against five bacterial strains (two gram-positive, Staphylococcus aureus, and Enterococcus faecalis; and three gram-negative bacteria, Escherichia coli, Escherichia vekanda, and Pseudomonas aeruginosa) and two fungi (Candida albicans, and Geotrichum candidum). Additionally, we evaluated the cytotoxicity of CSEE on three human breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-436) and assessed the potential genotoxicity of the extract using the comet assay. Through HPLC-DAD analysis, we determined that phenolic acids and flavonoids were the primary constituents of the CSEE extract. The results of the DPPH test indicated a potent scavenging capacity of the extract with an IC50 of 302.78 ± 7.55 µg/mL, which was comparable to that of ascorbic acid with an IC50 of 260.24 ± 6.45 µg/mL. Similarly, the ß-carotene test demonstrated an IC50 of 352.06 ± 12.16 µg/mL, signifying the extract's potential to inhibit oxidative damage. The ABTS assay revealed IC50 values of 48.13 ± 3.66 TE µmol/mL, indicating a strong ability of CSEE to scavenge ABTS radicals, and the TAC assay demonstrated an IC50 value of 165 ± 7.66 µg AAE/mg. The results suggest that the CSEE extract had potent antioxidant activity. Regarding its antimicrobial activity, the CSEE extract was effective against all five tested bacterial strains, indicating its broad-spectrum antibacterial properties. However, it only showed moderate activity against the two tested fungal strains, suggesting it may not be as effective against fungi. The CSEE exhibited a noteworthy dose-dependent inhibitory activity against all the tested tumor cell lines in vitro. The extract did not induce DNA damage at the concentrations of 6.25, 12.5, 25, and 50 µg/mL, as assessed by the comet assay. However, the 100 µg/mL concentration of CSEE resulted in a significant genotoxic effect compared to the negative control. A computational analysis was conducted to determine the physicochemical and pharmacokinetic characteristics of the constituent molecules present in the extract. The Prediction of Activity Spectra of Substances (PASS) test was employed to forecast the potential biological activities of these molecules. Additionally, the toxicity of the molecules was evaluated using the Protox II webserver.

12.
Antibiotics (Basel) ; 12(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37107017

ABSTRACT

Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography-mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO's identified compounds' drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.

SELECTION OF CITATIONS
SEARCH DETAIL
...