Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Pharmacoeconomics ; 42(3): 329-341, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38001394

ABSTRACT

BACKGROUND: Antimicrobial resistance is a growing public health concern. There is a global need to estimate the population-level value of developing new antimicrobials and to ensure the effective use of existing antimicrobials as strategies to counteract antimicrobial resistance. To this aim, population-level value criteria need to be considered alongside conventional value measures. OBJECTIVE: The objective of this study was to develop a novel modelling approach to estimate the value of new antimicrobials, considering the transmission, diversity and enablement elements of STEDI value. METHODS: We developed a population-based mathematical model for the assessment of antimicrobial value considering both prophylactic use of antimicrobials and the treatment of selected serious hospital-acquired infections in hospitals in the USA at a population level. Large-scale clinical and population healthcare data were used to inform a modelling-based analysis assessing the impact of introducing a new antimicrobial compared with continuing with no new antimicrobial, accounting for the transmission, diversity and enablement value of antimicrobial agents. RESULTS: Over a 10-year period, the addition of a new antimicrobial as part of an antimicrobial stewardship strategy in the USA was estimated to result in a proportional reduction of 9.03% in projected antimicrobial resistance levels. This yielded an estimated reduction of $64.3 million in hospitalization costs and a gain of over 153,000 quality-adjusted life-years at an economic value of over $15.4 billion over 10 years. Considering input uncertainty, the estimate of monetary benefit ranged from $11.1 to $21.4 billion. CONCLUSIONS: The use of a new antimicrobial for treatment and prophylactic indications yields considerable clinical and economic benefits including transmission diversity and enablement value. These findings may provide decision makers with important evidence to support investment in new antimicrobials and antimicrobial stewardship policy that address the patient, population and system burden associated with antimicrobial resistance.


Subject(s)
Anti-Infective Agents , Cross Infection , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Drug Resistance, Microbial
3.
Health Policy ; 136: 104892, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37632993

ABSTRACT

Antimicrobial resistance (AMR) is one of the major threats to global population health, and the antimicrobial market requires substantial reimbursement reform and/or significant financial incentives to function properly. To address these challenges, England piloted a new health technology evaluation process in conjunction with a new payment model in 2019. The value assessment was performed using a dedicated broader value framework for antibiotics for the first time. This so-called STEDI framework is an acronym based on the five value elements it covers (Spectrum, Transmission, Enablement, Diversity, and Insurance value). Learnings from the pilot show that there are important considerations when implementing this value framework: The STEDI value profile of an antibiotic strongly depends on the local context and is impacted by trade-offs between individual value elements. Decision makers should therefore act carefully when applying STEDI to avoid distorting the overall evaluation result. Considering the STEDI value profile of an antibiotic is an important part of its value assessment as it allows for distinguishing between higher- and lower-value products. However, given the complexities surrounding its value assessment, further research must be undertaken to improve the overall STEDI evaluation process.


Subject(s)
Anti-Infective Agents , Insurance , Population Health , Humans , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/therapeutic use , England
4.
Pharmacoeconomics ; 41(12): 1657-1673, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37587392

ABSTRACT

INTRODUCTION: Antimicrobial resistance remains a serious and growing threat to public health, both globally and in the UK, leading to diminishing effectiveness of antimicrobials. Despite a clear need for new antimicrobials, the clinical pipeline is insufficient, driven by high research and development costs and limited expected returns on investment. To counteract this, National Institute for Health and Care Excellence (NICE) and National Health Service (NHS) England have launched a reimbursement mechanism, de-linked from volume of sales, that aims to reduce economic risk by recognising the broader population-level value of antimicrobials. The objective of this study was to quantify the value of ceftazidime-avibactam for treating gram-negative infections in the UK considering some of these broader value elements unique to antimicrobials. METHODS: A previously developed dynamic disease transmission and cost-effectiveness model was applied to assess the value of introducing ceftazidime-avibactam to UK treatment practice in the management of gram-negative hospital-acquired infections in line with the licenced indications for ceftazidime-avibactam. Model inputs were parameterised using sources aligned to the UK perspective. RESULTS: The introduction of ceftazidime-avibactam into a two-line treatment sequence saved over 2300 lives, leading to a gain of 27,600 life years and 22,000 quality-adjusted life years (QALY) at an additional cost of £17 million, over a ten-year transmission period. Ceftazidime-avibactam was associated with a net monetary benefit of £642 million at willingness to pay threshold of £30,000 per QALY; even at a lower threshold of £20,000 per QALY, the net monetary benefit is £422 million. DISCUSSION: Increasing the diversity of antimicrobial treatments through the introduction of an additional antimicrobial, in this instance ceftazidime-avibactam, was associated with substantial clinical and economic benefits, when considering broader population-level value. Despite revealing considerable benefits, the value of ceftazidime-avibactam is only partially reflected in this analysis. Further efforts are required to fully operationalise the spectrum, transmission, enablement, diversity and insurance (STEDI) value framework and accurately reflect the population-level value of antimicrobials.


Subject(s)
Ceftazidime , Gram-Negative Bacterial Infections , Humans , Ceftazidime/therapeutic use , Anti-Bacterial Agents/therapeutic use , Cost-Benefit Analysis , State Medicine , Gram-Negative Bacterial Infections/drug therapy , United Kingdom
5.
Article in English | MEDLINE | ID: mdl-37502249

ABSTRACT

Objective: To quantify the economic burden of bacterial antimicrobial resistance in Thailand and estimate potential savings from improving the rate of appropriate empiric treatment, where effective coverage is provided within the first days of infection. Design: Cost-of-illness study. Methods: A cost-calculator, decision-tree model was developed using published data and records from 3 Thai hospitals for patients hospitalized with antimicrobial-resistant infections between 2015 and 2019. Direct and indirect costs of antimicrobial-resistant infections were assessed over a 5-year time horizon, with outcomes derived separately for cases having received appropriate empiric treatment versus inappropriate empiric treatment. In a real-world scenario, outcomes were estimated using actual rates of inappropriate empiric treatment, and in a hypothetical scenario, outcomes were estimated using decreased rates of inappropriate empiric treatment. Results: Over 5 years, in-hospital antimicrobial-resistant infections produced costs of approximately Thai baht (THB) 66.4 billion (USD 2.1 billion) in the real-world scenario and THB 65.8 billion (USD 2.1 billion) in the hypothetical scenario (0.9% cost savings relative to the real-world scenario). Most costs were attributable to income loss due to in-hospital mortality (real world: THB 53.7 billion [USD 1.7 billion]; 80.9% of costs; hypothetical: THB 53.2 billion [USD 1.7 billion]; 80.8% of costs) and hospitalization (real world: THB 10.3 billion [USD 330.8 million]; 15.5% of costs; hypothetical: THB 10.2 billion [USD 328.9 million]; 15.5% of costs). Conclusions: In-hospital antimicrobial-resistant infections produced a substantial economic toll in Thailand. This public health burden could be reduced with a strategy aimed at decreasing the rate of patients receiving inappropriate empiric treatment.

6.
Infect Dis Ther ; 12(7): 1891-1905, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37410343

ABSTRACT

INTRODUCTION: Antimicrobial resistance (AMR) is a major public health threat worldwide. Greece has the highest burden of infections due to antibiotic-resistant bacteria among European Union/European Economic Area (EU/EEA) countries. One of the most serious AMR threats in Greece is hospital-acquired infections (HAIs) with limited treatment options (LTO) caused by resistant gram-negative pathogens. Thus, this study sought to estimate the current AMR burden in Greece and the value of reducing AMR to gram-negative pathogens for the Greek healthcare system. METHODS: The current model was adapted from a previously published and validated model of AMR to investigate the overall and AMR-specific burden of treating the most common HAIs with LTO in Greece and scenarios to demonstrate the benefits associated with reducing AMR levels from a third-party payer perspective. Clinical and economic outcomes were estimated over a 10-year time horizon; life years (LYs) and quality-adjusted life years (QALYs) were calculated over a lifetime (based on the annual number of infections over 10 years) at a willingness-to-pay of €30,000 per QALY gained and a 3.5% discount rate. RESULTS: In Greece, the current AMR levels in HAIs with LTO caused by four gram-negative pathogens account for > 316,000 hospital bed days, €73 million in hospitalisation costs, and > 580,000 LYs and 450,000 QALYs lost over 10 years. The monetary burden is estimated at €13.9 billion. A reduction in current AMR levels by 10-50% results in clinical and economic benefit; 29,264-151,699 bed days may be saved, leading to decreased hospitalisation costs (€6.8 million-€35.3 million) and a gain in LYs (85,328-366,162) and QALYs (67,421-289,331), associated with a monetary benefit of between €2.0 billion and €8.7 billion. CONCLUSION: This study shows the substantial clinical and economic burden AMR represents to the Greek healthcare system and the value that can be achieved by effectively reducing AMR levels.

7.
Infect Dis Ther ; 12(6): 1695-1713, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37302137

ABSTRACT

INTRODUCTION: While incidence rates of vancomycin-resistant Enterococcus faecium have remained comparatively low in Japan, there have been increasing reports of more vancomycin-resistant Enterococcus (VRE) outbreaks, requiring costly measures to contain. Increased incidence of VRE in Japan may lead to more frequent and harder to contain outbreaks with current control measures, causing a significant burden to the healthcare system in Japan. This study aimed to demonstrate the clinical and economic burden of vancomycin-resistant E. faecium infections to the Japanese healthcare system and the impact of increasing rates of vancomycin resistance. METHODS: A de novo deterministic analytic model was developed to assess the health economic outcomes of treating hospital-acquired VRE infections; patients are treated according to a two-line treatment strategy, dependent on their resistance status. The model considers hospitalisation costs and the additional cost of infection control. Scenarios investigated the current burden of VRE infections and the additional burden of increased incidence of VRE. Outcomes were assessed over a 1-year and 10-year time horizon from a healthcare payer's perspective in a Japanese setting. Quality-adjusted life years (QALYs) were valued with a willingness-to-pay threshold of ¥5,000,000 ($38,023), and costs and benefits were discounted at a rate of 2%. RESULTS: Current VRE incidence levels in enterococcal infections in Japan equates to ¥130,209,933,636 ($996,204,669) in associated costs and a loss of 185,361 life years (LYs) and 165,934 QALYs over 10 years. A three-fold increase (1.83%) is associated with an additional ¥4,745,059,504 ($36,084,651) in total costs on top of the current cost burden as well as an additional loss of 683 LYs over a lifetime, corresponding to 616 QALYs lost. CONCLUSION: Despite low incidence rates, VRE infections already represent a substantial economic burden to the Japanese healthcare system. The substantial increase in costs associated with a higher incidence of VRE infections could result in a significant economic challenge for Japan.

8.
Infect Dis Ther ; 12(7): 1875-1889, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37341866

ABSTRACT

INTRODUCTION: Antimicrobial resistance (AMR) is a global public health challenge requiring a global response to which Australia has issued a National Antimicrobial Resistance Strategy. The necessity for continued-development of new effective antimicrobials is required to tackle this immediate health threat is clear, but current market conditions may undervalue antimicrobials. We aimed to estimate the health-economic benefits of reducing AMR levels for drug-resistant gram-negative pathogens in Australia, to inform health policy decision-making. METHODS: A published and validated-dynamic health economic model was adapted to the Australian setting. Over a 10-year time horizon, the model estimates the clinical and economic outcomes associated with reducing current AMR levels, by up to 95%, of three gram-negative pathogens in three hospital-acquired infections, from the perspective of healthcare payers. A willingness-to-pay threshold of AUD$15,000-$45,000 per quality-adjusted life-year (QALY) gained and a 5% discount rate (for costs and benefits) were applied. RESULTS: Over ten years, reducing AMR for gram-negative pathogens in Australia is associated with up to 10,251 life-years and 8924 QALYs gained, 9041 bed-days saved and 6644 defined-daily doses of antibiotics avoided. The resulting savings are estimated to be $10.5 million in hospitalisation costs, and the monetary benefit at up to $412.1 million. DISCUSSION: Our results demonstrate the clinical and economic value of reducing AMR impact in Australia. Of note, since our analysis only considered a limited number of pathogens in the hospital setting only and for a limited number of infection types, the benefits of counteracting AMR are likely to extend well beyond the ones demonstrated here. CONCLUSION: These estimates demonstrate the consequences of failure to combat AMR in the Australian context. The benefits in mortality and health system costs justify consideration of innovative reimbursement schemes to encourage the development and commercialisation of new effective antimicrobials.

9.
Infect Dis Ther ; 12(2): 527-543, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36544074

ABSTRACT

INTRODUCTION: Hospital-acquired infections (HAIs) and growing antimicrobial resistance (AMR) represent a significant healthcare burden globally. Especially in Greece, HAIs with limited treatment options (LTO) pose a serious threat due to increased morbidity and mortality. This study aimed to estimate the clinical and economic value of introducing a new antibacterial for HAIs with LTO in Greece. METHODS: A previously published and validated dynamic model of AMR was adapted to the Greek setting. The model estimated the clinical and economic outcomes of introducing a new antibacterial for the treatment of HAIs with LTO in Greece. The current treatment pathway was compared with introducing a new antibacterial to the treatment sequence. Outcomes were assessed from a third-party payer perspective, over a 10-year transmission period, with quality-adjusted life years (QALYs) and life years (LYs) gained considered over a lifetime horizon. RESULTS: Over the next 10 years, HAIs with LTO in Greece account for approximately 1.4 million hospital bed days, hospitalisation costs of more than €320 million and a loss of approximately 403,000 LYs (319,000 QALYs). Introduction of the new antibacterial as first-line treatment provided the largest clinical and economic benefit, with savings of up to 93,000 bed days, approximately €21 million in hospitalisation costs and an additional 286,000 LYs (226,000 QALYs) in comparison to the current treatment strategy. The introduction of a new antibacterial was linked to a monetary benefit of €6.8 billion at a willingness to pay threshold of €30,000 over 10 years. CONCLUSION: This study highlights the considerable clinical and economic benefit of introducing a new antibacterial for HAIs with LTO in Greece. This analysis shows the additional benefit when a new antibacterial is introduced to treatment sequences. These findings can be used to inform decision makers to implement policies to ensure timely access to new antibacterial treatments in Greece.


Antimicrobial resistance is a major issue for the Greek healthcare system. The overuse of antibacterial agents contributes to the growing resistance levels, making currently available treatment options less effective. As a result, there is an imperative need to address antimicrobial resistance in Greece. This study developed a mathematical model to investigate the clinical and economic benefits of introducing a new antibacterial to current treatment practice. The model uses regression equations to describe the relationships between inputs and outputs from a published and validated model, which describes the transmission and treatment of infections. The model is used to estimate the impact of a new treatment in Greece, considering differing treatment sequence scenarios. The largest health and financial benefits were seen when a new antibacterial was introduced at first line prior to currently used treatments. Over 10 years, savings of up to 93,000 hospital bed days and €21 million in hospitalisation costs could be achieved, as well as a gain of 286,000 patient life years and 226,000 patient quality-adjusted life years (QALYs), a measure of a patient's quality and length of life, over their remaining lifetime. The introduction of a new antibacterial into the current treatment pathway resulted in an overall monetary benefit of €6.8 billion over 10 years, when additional QALYs are valued at €30,000. This study demonstrates considerable health economic benefits of introducing a new antibacterial in Greece and can help inform decision makers when developing a national action plan to combat resistance and improve access to treatments.

10.
Pharmacoecon Open ; 7(1): 65-76, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36107306

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is one of the most serious public health challenges worldwide, including in Japan. Globally, research and development of new antimicrobials has stalled due to unfavorable market conditions, which undervalue antimicrobials. Furthermore, Japan faces the additional challenge of delayed commercialization for a number of recently approved treatments. OBJECTIVE: This study aims to examine the impact on AMR of introducing a new anti-infective treatment, ceftazidime/avibactam, into current treatment strategies. It reports the resulting clinical and economic outcomes from the perspective of healthcare payers in Japan. METHODS: A previously published and validated dynamic disease transmission model was adapted to the Japanese setting. The model estimated health economic outcomes for treating three Gram-negative hospital-acquired infections, under different treatment strategies, from a healthcare payers' perspective. Outcomes were assessed over a 10-year time horizon with a willingness-to-pay threshold of ¥5,000,000 (US$45,556) per quality-adjusted life-year (QALY) gained and an annual discount rate of 2% applied to costs and benefits. RESULTS: Introducing ceftazidime/avibactam in the framework of a diversification strategy with piperacillin/tazobactam is associated with reducing 798,640 bed days, equating to ¥21.0 billion (US$190.9 million) savings in hospitalization costs, and a gain of 363,034 life-years, or 308,641 QALYs. This translates into a monetary benefit of ¥1.56 trillion (US$14.3 billion) to Japanese healthcare payers. DISCUSSION: Introducing a new antimicrobial agent into clinical practice is associated with considerable clinical and economic benefits. This analysis demonstrates that the approach taken to incorporate a new antimicrobial agent into clinical practice impacts on the scale of these clinical and economic benefits; greater benefits are associated with earlier use of antimicrobials as part of an antimicrobial stewardship program. CONCLUSION: This analysis shows that changing the way in which a new antimicrobial is used within a treatment strategy has the potential for additional significant clinical and economic value.

11.
J Health Econ Outcomes Res ; 8(2): 64-75, 2021.
Article in English | MEDLINE | ID: mdl-34703834

ABSTRACT

Background: Antimicrobial resistance (AMR) represents a significant global public health crisis. Despite ample availability of Gram-positive antibiotics, there is a distinct lack of agents against Gram-negative pathogens, including carbapenem-resistant Enterobacterales, which remains a real threat in Japan. The AMR Action Plans aim to mitigate the growing public health concern posed by AMR. Objective: This study aims to estimate the clinical and economic outcomes of drug-resistant Gram-negative pathogens forecasts for Japan to guide resource allocation defined within the upcoming National AMR Action Plan. Methods: A previously published and validated dynamic health economic model was adapted to the Japanese setting. The model used a 10-year time horizon with a willingness-to-pay threshold of ¥5 000 000 (US $46 827) and discounting was applied at a rate of 2% to costs and benefits. Clinical and economic outcomes were assessed as a function of varying AMR levels of three Gram-negative pathogens in Japan by up to 100% of the current level. Results: Reducing drug-resistant Gram-negative pathogens in Japan has the potential to save 4 249 096 life years, corresponding to 3 602 311 quality-adjusted life years. The associated maximum clinical and economic gains were estimated at up to 4 422 284 bed days saved, up to 3 645 480 defined daily doses of antibiotics avoided, up to ¥117.6 billion (US $1.1 billion) saved in hospitalization costs, and a net monetary benefit of up to ¥18.1 trillion (US $169.8 billion). Discussion: Learnings from this study can be used by the Japanese government to help inform decision-making on the strategies that may be included in the upcoming National AMR Action Plan and facilitate allocation of the required budget. Conclusions: This analysis demonstrated the considerable economic and clinical value of reducing AMR levels of three Gram-negative pathogens in Japan and could be utilized to support the valuation of antimicrobial treatment and resistance in Japan and more broadly.

12.
Pharmacoeconomics ; 38(8): 857-869, 2020 08.
Article in English | MEDLINE | ID: mdl-32249396

ABSTRACT

OBJECTIVES: Antimicrobial resistance (AMR) represents a significant threat to patient and population health. The study aim was to develop and validate a model of AMR that defines and quantifies the value of new antibiotics. METHODS: A dynamic disease transmission and cost-effectiveness model of AMR consisting of three components (disease transmission, treatment pathway and optimisation) was developed to evaluate the health economic value of new antibiotics. The model is based on the relationship between AMR, antimicrobial availability and consumption. Model analysis explored the impact of different antibiotic treatment strategies on the development of AMR, patient and population estimates of health benefit, across three common treatment indications and pathogens in the UK. RESULTS: Population-level resistance to existing antimicrobials was estimated to increase from 10.3 to 16.1% over 10 years based on current antibiotic availability and consumption. In comparison, the diversified use of a new antibiotic was associated with significant reduction in AMR (12.8% vs. 16.1%) and quality-adjusted life year (QALY) gains at a patient (7.7-10.3, dependent on antimicrobial efficacy) and population level (3657-8197, dependent on antimicrobial efficacy and the prevalence of AMR). Validation across several real-world data sources showed that the model output does not tend to systematically under- or over-estimate observed data. CONCLUSIONS: The development of new antibiotics and the appropriate use of existing antibiotics are key to addressing the threat of AMR. This study presents a validated model that quantifies the value of new antibiotics through clinical and economic outcomes of relevance, and accounts for disease transmission of infection and development of AMR. In this context, the model may be a useful tool that could contribute to the decision-making process alongside other potential models and expert advice.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Models, Economic , Quality-Adjusted Life Years , Anti-Bacterial Agents/economics , Bacterial Infections/economics , Bacterial Infections/transmission , Cost-Benefit Analysis , Drug Development , Drug Resistance, Bacterial , Humans , United Kingdom
13.
J Med Econ ; 23(1): 86-97, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31262225

ABSTRACT

Aims: To estimate the cost-effectiveness of isavuconazole compared with the standard of care, voriconazole, for the treatment of patients with invasive fungal infection disease when differential diagnosis of the causative pathogen has not yet been achieved at treatment initiation.Materials and methods: The economic model was developed from the perspective of the UK National Health Service (NHS) and used a decision-tree approach to reflect real-world treatment of patients with invasive fungal infection (IFI) prior to differential pathogen diagnosis. It was assumed that 7.8% of patients with IFI prior to differential pathogen diagnosis at treatment initiation actually had mucormycosis, and confirmation of pathogen identification was achieved for 50% of all patients during treatment. To extrapolate to a lifetime horizon, the model considered expected survival based on the patients' underlying condition. The model estimated the incremental costs (costs of drugs, laboratory analysis, hospitalization, and management of adverse events) and clinical outcomes (life-years (LYs) and quality-adjusted life-years (QALYs)) of first-line treatment with isavuconazole compared with voriconazole. The robustness of the results was assessed by conducting deterministic and probabilistic sensitivity analyses.Results: Isavuconazole delivered 0.48 more LYs and 0.39 more QALYs per patient at an incremental cost of £3,228, compared with voriconazole in the treatment of patients with IFI prior to differential pathogen diagnosis. This equates to an incremental cost-effectiveness ratio (ICER) of £8,242 per additional QALY gained and £6,759 per LY gained. These results were driven by a lack of efficacy of voriconazole in mucormycosis. Results were most sensitive to the mortality of IA patients and treatment durations.Conclusions: At a willingness to pay (WTP) threshold of £30,000 per additional QALY, the use of isavuconazole for the treatment of patients with IFI prior to differential pathogen diagnosis in the UK can be considered a cost-effective allocation of healthcare resources compared with voriconazole.


Subject(s)
Antifungal Agents/economics , Antifungal Agents/therapeutic use , Health Expenditures/statistics & numerical data , Invasive Fungal Infections/drug therapy , Nitriles/economics , Nitriles/therapeutic use , Pyridines/economics , Pyridines/therapeutic use , Triazoles/economics , Triazoles/therapeutic use , Cost-Benefit Analysis , Decision Trees , Diagnosis, Differential , Health Resources/economics , Health Services/economics , Health Services/statistics & numerical data , Hospitalization/economics , Humans , Invasive Fungal Infections/diagnosis , Models, Economic , Prescription Fees/statistics & numerical data , Quality-Adjusted Life Years , State Medicine , Survival Analysis , Uncertainty , United Kingdom , Voriconazole/economics , Voriconazole/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...