Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Andrology ; 9(5): 1603-1616, 2021 09.
Article in English | MEDLINE | ID: mdl-33960147

ABSTRACT

BACKGROUND: Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but no studies have involved cytotoxic treatment before puberty and transplantation after puberty, which would be the most likely clinical scenario. OBJECTIVES: To evaluate donor-derived functional sperm production after SSC transplantation to adult monkeys that had received testicular irradiation during the prepubertal period. MATERIALS AND METHODS: We obtained prepubertal testis tissue by unilaterally castrating six prepubertal monkeys and 2 weeks later irradiated the remaining testes with 6.9 Gy. However, because spermatogenic recovery was observed, we irradiated them again 14 months later with 7 Gy. Three of the monkeys were treated with GnRH-antagonist (GnRH-ant) for 8 weeks. The cryopreserved testis cells from the castrated testes were then allogeneically transplanted into the intact testes of all monkeys. Tissues were harvested 10 months later for analyses. RESULTS: In three of the six monkeys, 61%, 38%, and 11% of the epididymal sperm DNA were of the donor genotype. The ability to recover donor-derived sperm production was not enhanced by the GnRH-ant pretreatment. However, the extent of filling seminiferous tubules during the transplantation procedure was correlated with the eventual production of donor spermatozoa. The donor epididymal spermatozoa from the recipient with 61% donor contribution were capable of fertilizing rhesus eggs and forming embryos. Although the transplantation was done into the rete testis, two GnRH-ant-treated monkeys, which did not produce donor-derived epididymal spermatozoa, displayed irregular tubular cords in the interstitium containing testicular spermatozoa derived from the transplanted donor cells. DISCUSSION AND CONCLUSION: The results further support that sperm production can be restored in non-human primates from tissues cryopreserved prior to prepubertal and post-pubertal gonadotoxic treatment by transplantation of these testicular cells after puberty into seminiferous tubules.


Subject(s)
Adult Germline Stem Cells/transplantation , Puberty/radiation effects , Radiation Injuries, Experimental/therapy , Spermatogenesis/radiation effects , Stem Cell Transplantation , Animals , Cryopreservation , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Hormone Antagonists/administration & dosage , Macaca mulatta , Male , Radiation Injuries, Experimental/physiopathology , Seminiferous Tubules , Spermatozoa/radiation effects , Testis/physiopathology , Testis/radiation effects
2.
Andrology ; 8(5): 1428-1441, 2020 09.
Article in English | MEDLINE | ID: mdl-32351003

ABSTRACT

BACKGROUND: In male pre-pubertal cancer patients, radiation and chemotherapy impact future fertility by eradication of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but only a small percentage of spermatozoa produced were of donor origin. Transient hormone suppression with a GnRH antagonist (GnRH-ant) enhanced spermatogenic recovery from transplanted SSCs. OBJECTIVES: To evaluate donor-derived and endogenous spermatogenic recovery after SSC transplantation into irradiated monkeys and to test whether hormone suppression around the time of transplantation facilitates spermatogenic recovery. MATERIALS AND METHODS: Testes of 15 adult rhesus monkeys were irradiated with 7 Gy and 4 months later transplanted, to one of the testes, with cryopreserved testicular cells containing SSCs from unrelated monkeys. Monkeys were either treated with GnRH-ant for 8 weeks before transplantation, GnRH-ant from 4 weeks before to 4 weeks after transplantation, or with no GnRH-ant. Tissues were harvested 10 months after transplantation. RESULTS: Two of the 15 monkeys, a control and a pre-transplantation GnRH-ant-treated, showed substantially higher levels of testicular spermatogenesis and epididymal sperm output in the transplanted side as compared to the untransplanted. Over 84% of epididymal spermatozoa on the transplanted side had the donor genotype and were capable of fertilizing eggs after intracytoplasmic sperm injection forming morulae of the donor paternal origin. Low levels of donor spermatozoa (~1%) were also identified in the epididymis of three additional monkeys. Transplantation also appeared to enhance endogenous spermatogenesis. DISCUSSION AND CONCLUSION: We confirmed that SSC transplantation can be used for restoration of fertility in male cancer survivors exposed to irradiation as a therapeutic agent. The success rate of this procedure, however, is low. The success of filling the tubules with the cell suspension, but not the GnRH-ant treatment, was related to the level of colonization by transplanted cells.


Subject(s)
Adult Germline Stem Cells/transplantation , Spermatogenesis/physiology , Spermatogonia/transplantation , Stem Cell Transplantation/methods , Testis/radiation effects , Animals , Macaca mulatta , Male , Radiation Injuries, Experimental
3.
Radiat Res ; 193(4): 341-350, 2020 04.
Article in English | MEDLINE | ID: mdl-32068498

ABSTRACT

Dedicated precision orthovoltage small animal irradiators have become widely available in the past decade and are commonly used for radiation biology research. However, there is a lack of dosimetric standardization among these irradiators, which affects the reproducibility of radiation-based animal studies. The purpose of this study was to develop a mail-based, independent peer review system to verify dose delivery among institutions using X-RAD 225Cx irradiators (Precision X-Ray, North Branford, CT). A robust, user-friendly mouse phantom was constructed from high-impact polystyrene and designed with dimensions similar to those of a typical laboratory mouse. The phantom accommodates three thermoluminescent dosimeters (TLDs) to measure dose. The mouse peer review system was commissioned in a small animal irradiator using anterior-posterior and posterior-anterior beams of 225 kVp and then mailed to three institutions to test the feasibility of the audit service. The energy correction factor for TLDs in the mouse phantom was derived to validate the delivered dose using this particular animal irradiation system. This feasibility study indicated that three institutions were able to deliver a radiation dose to the mouse phantom within ±10% of the target dose. The developed mail audit independent peer review system for the verification of mouse dosimetry can be expanded to characterize other commercially available orthovoltage irradiators, thereby enhancing the reproducibility of studies employing these irradiators.


Subject(s)
Radiation Dosage , Radiobiology/standards , Radiometry/standards , Animals , Calibration , Mice , Peer Review/standards , Phantoms, Imaging/standards , Postal Service , X-Rays
4.
Proc Natl Acad Sci U S A ; 116(35): 17429-17437, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31409715

ABSTRACT

Gastrointestinal (GI) syndrome is a serious side effect and dose-limiting toxicity observed in patients undergoing lower-abdominal radiotherapy. Previous mouse studies show that p53 gene dosage determines susceptibility to GI syndrome development. However, the translational relevance of p53 activity has not been addressed. Here, we used a knock-in mouse in which the p53-Mdm2 negative feedback loop is genetically disrupted. These mice retain biallelic p53 and thus, normal basal p53 levels and activity. However, due to the lack of p53-mediated Mdm2 transcription, irradiated Mdm2P2/P2 mice exhibit enhanced acute p53 activity, which protects them from GI failure. Intestinal crypt cells residing in the +4 and higher positions exhibit decreased apoptosis, increased p21 expression, and hyperproliferation to reinstate intestinal integrity. Correspondingly, pharmacological augmentation of p53 activity in wild-type mice with an Mdm2 inhibitor protects against GI toxicity without affecting therapeutic outcome. Our results suggest that transient disruption of the p53-Mdm2 interaction to enhance p53 activity could be a viable prophylactic strategy for alleviating GI syndrome in patients undergoing radiotherapy.


Subject(s)
Gastrointestinal Diseases/etiology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/radiation effects , Radiation Injuries/metabolism , Radiation, Ionizing , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Disease Models, Animal , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/mortality , Gastrointestinal Diseases/pathology , Gastrointestinal Tract/pathology , Humans , Mice , Mice, Knockout , Models, Biological , Radiation Injuries/genetics , Radiation Injuries/mortality , Radiation Injuries/pathology , Radiation Injuries, Experimental , Tumor Suppressor Protein p53/genetics , ras Proteins/genetics , ras Proteins/metabolism
5.
Cancer Res ; 79(9): 2327-2338, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043430

ABSTRACT

When pancreatic cancer cannot be removed surgically, patients frequently experience morbidity and death from progression of their primary tumor. Radiation therapy (RT) cannot yet substitute for an operation because radiation causes fatal bleeding and ulceration of the nearby stomach and intestines before achieving tumor control. There are no FDA-approved medications that prevent or reduce radiation-induced gastrointestinal injury. Here, we overcome this fundamental problem of anatomy and biology with the use of the oral EGLN inhibitor FG-4592, which selectively protects the intestinal tract from radiation toxicity without protecting tumors. A total of 70 KPC mice with autochthonous pancreatic tumors received oral FG-4592 or vehicle control ± ablative RT to a cumulative 75 Gy administered in 15 daily fractions to a limited tumor field. Although ablative RT reduced complications from local tumor progression, fatal gastrointestinal bleeding was observed in 56% of mice that received high-dose RT with vehicle control. However, radiation-induced bleeding was completely ameliorated in mice that received high-dose RT with FG-4592 (0% bleeding, P < 0.0001 compared with vehicle). Furthermore, FG-4592 reduced epithelial apoptosis by half (P = 0.002) and increased intestinal microvessel density by 80% compared with vehicle controls. EGLN inhibition did not stimulate cancer growth, as treatment with FG-4592 alone, or overexpression of HIF2 within KPC tumors independently improved survival. Thus, we provide a proof of concept for the selective protection of the intestinal tract by the EGLN inhibition to enable ablative doses of cytotoxic therapy in unresectable pancreatic cancer by reducing untoward morbidity and death from radiation-induced gastrointestinal bleeding. SIGNIFICANCE: Selective protection of the intestinal tract by EGLN inhibition enables potentially definitive doses of radiation therapy. This might allow radiation to be a surgical surrogate for unresectable pancreatic cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2327/F1.large.jpg.


Subject(s)
Glycine/analogs & derivatives , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Isoquinolines/pharmacology , Pancreatic Neoplasms/mortality , Radiation Injuries/prevention & control , Radiation-Protective Agents/pharmacology , Radiotherapy/mortality , Animals , Apoptosis , Female , Glycine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Proto-Oncogene Proteins p21(ras)/physiology , Radiation Injuries/etiology , Radiation Injuries/mortality , Radiotherapy/adverse effects , Transcription Factors/physiology , Tumor Suppressor Protein p53/physiology
6.
Nat Commun ; 9(1): 5339, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559363

ABSTRACT

A major challenge in stem cell differentiation is the availability of bioassays to prove cell types generated in vitro are equivalent to cells in vivo. In the mouse, differentiation of primordial germ cell-like cells (PGCLCs) from pluripotent cells was validated by transplantation, leading to the generation of spermatogenesis and to the birth of offspring. Here we report the use of xenotransplantation (monkey to mouse) and homologous transplantation (monkey to monkey) to validate our in vitro protocol for differentiating male rhesus (r) macaque PGCLCs (rPGCLCs) from induced pluripotent stem cells (riPSCs). Specifically, transplantation of aggregates containing rPGCLCs into mouse and nonhuman primate testicles overcomes a major bottleneck in rPGCLC differentiation. These findings suggest that immature rPGCLCs once transplanted into an adult gonadal niche commit to differentiate towards late rPGCs that initiate epigenetic reprogramming but do not complete the conversion into ENO2-positive spermatogonia.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/transplantation , Spermatocytes/cytology , Spermatogenesis/physiology , Spermatogonia/cytology , Testis/metabolism , Animals , Cells, Cultured , Female , Humans , Macaca mulatta , Male , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Transplantation, Heterologous , Transplantation, Homologous
7.
PLoS One ; 13(11): e0205803, 2018.
Article in English | MEDLINE | ID: mdl-30444887

ABSTRACT

Strong magnetic fields affect radiation dose deposition in MRI-guided radiation therapy systems, particularly at interfaces between tissues of differing densities such as those in the thorax. In this study, we evaluated the impact of a 1.5 T magnetic field on radiation-induced lung damage in C57L/J mice. We irradiated 140 mice to the whole thorax with parallel-opposed Co-60 beams to doses of 0, 9.0, 10.0, 10.5, 11.0, 12.0, or 13.0 Gy (20 mice per dose group). Ten mice per dose group were irradiated while a 1.5 T magnetic field was applied transverse to the radiation beam and ten mice were irradiated with the magnetic field set to 0 T. We compared survival and noninvasive assays of radiation-induced lung damage, namely respiratory rate and metrics derived from thoracic cone-beam CTs, between the two sets of mice. We report two main results. First, the presence of a transverse 1.5 T field during irradiation had no impact on survival of C57L/J mice. Second, there was a small but statistically significant effect on noninvasive assays of radiation-induced lung damage. These results provide critical safety data for the clinical introduction of MRI-guided radiation therapy systems.


Subject(s)
Lung/radiation effects , Radiation Injuries, Experimental/physiopathology , Radiotherapy, Image-Guided/adverse effects , Thorax/physiopathology , Animals , Electromagnetic Fields/adverse effects , Humans , Lung/physiopathology , Magnetic Resonance Imaging/adverse effects , Mice , Radiation Dosage , Radiation Injuries, Experimental/etiology , Thorax/radiation effects
8.
Hum Reprod ; 33(12): 2249-2255, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30358843

ABSTRACT

STUDY QUESTION: Can transplanted primate testicular cells form seminiferous tubules de novo, supporting complete spermatogenesis? SUMMARY ANSWER: Cryopreserved testicular cells from a prepubertal monkey can reorganize in an adult monkey recipient testis forming de novo seminiferous tubular cords supporting complete spermatogenesis. WHAT IS KNOWN ALREADY: De novo morphogenesis of testicular tissue using aggregated cells from non-primate species grafted either subcutaneously or in the testis can support spermatogenesis. STUDY DESIGN, SIZE, DURATION: Two postpubertal rhesus monkeys (Macaca mulatta) were given testicular irradiation. One monkey was given GnRH-antagonist treatment from 8 to 16 weeks after irradiation, while the other received sham injections. At 16 weeks, cryopreserved testicular cells from two different prepubertal monkeys [43 × 106 viable (Trypan-blue excluding) cells in 260 µl, and 80 × 106 viable cells in 400 µl] were transplanted via ultrasound-guided injections to one of the rete testis in each recipient, and immune suppression was given. The contralateral testis was sham transplanted. Testes were analyzed 9 months after transplantation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Spermatogenic recovery was assessed by testicular volume, weight, histology and immunofluorescence. Microsatellite genotyping of regions of testicular sections obtained by LCM determined whether the cells were derived from the host or transplanted cells. MAIN RESULTS AND THE ROLE OF CHANCE: Transplanted testis of the GnRH-antagonist-treated recipient, but not the sham-treated recipient, contained numerous irregularly shaped seminiferous tubular cords, 89% of which had differentiating germ cells, including sperm in a few of them. The percentages of donor genotype in different regions of this testis were as follows: normal tubule, 0%; inflammatory, 0%; abnormal tubule region, 67%; whole interior of abnormal tubules, >99%; adluminal region of the abnormal tubules, 92%. Thus, these abnormal tubules, including the enclosed germ cells, were derived de novo from the donor testicular cells. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: The de novo tubules were observed in only one out of the two monkeys transplanted with prepubertal donor testicular cells. WIDER IMPLICATIONS OF THE FINDINGS: These findings may represent a promising strategy for restoration of fertility in male childhood cancer survivors. The approach could be particularly useful in those exposed to therapeutic agents that are detrimental to the normal development of the tubule somatic cells affecting the ability of the endogenous tubules to support spermatogenesis, even from transplanted spermatogonial stem cells. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by research grants P01 HD075795 from Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD/NIH) to K.E.O and Cancer Center Support Grant P30 CA016672 from NCI/NIH to The University of Texas MD Anderson Cancer Center. The authors declare that they have no competing interests.


Subject(s)
Seminiferous Tubules/physiology , Spermatogenesis/physiology , Testis/cytology , Testis/transplantation , Animals , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Hormone Antagonists/pharmacology , Macaca mulatta , Male
9.
J Surg Res ; 204(2): 418-427, 2016 08.
Article in English | MEDLINE | ID: mdl-27565078

ABSTRACT

BACKGROUND: Vascularized lymph node transfer (VLNT) has become more widespread for surgical treatment of lymphedema. However, interaction between a transferred lymph node and the recipient lymphatic system in relieving lymphedema has not been identified. The aims of this study were to investigate anatomic changes in the lymphatic system in the forelimb of a canine after lymph node dissection and irradiation and to clarify the interaction between the transferred lymph node and recipient lymphatics. MATERIALS AND METHODS: Two adult female mongrel canines were used for this exploratory study. The unilateral axillary and lower neck node dissections were performed, and 15-Gy irradiation was applied on postoperative day 3. After 1 y, a VLNT flap was harvested from the lower abdominal region and inset in the axilla with vascular anastomoses. The girth of each forelimb was determined with a tape measure at different time points. Indocyanine green fluorescence lymphography and lymphangiography were performed before and after each surgery to evaluate morphologic changes in the lymphatics. RESULTS: Both canines revealed identical changes in the lymphatic system, but only one canine developed lymphedema. After lymph node dissection, a collateral lymphatic pathway formed a connection to the contralateral cervical node. After VLNT, an additional collateral pathway formed a connection to the internal mammary node via the transferred node in the axilla. CONCLUSIONS: The findings suggest that the lymphatic system has a homing mechanism, which allows the severed lymphatic vessels to detect and connect to adjacent lymph nodes. VLNT may create new collateral pathways to relieve lymphedema.


Subject(s)
Lymph Node Excision/adverse effects , Lymph Nodes/transplantation , Lymphangiogenesis , Lymphedema/surgery , Radiotherapy/adverse effects , Animals , Dogs , Female , Lymphedema/etiology , Models, Animal , Pilot Projects , Surgical Flaps/blood supply
10.
Med Phys ; 42(9): 5510-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26328998

ABSTRACT

PURPOSE: Magnetic fields are known to alter radiation dose deposition. Before patients receive treatment using an MRI-linear accelerator (MRI-Linac), preclinical studies are needed to understand the biological consequences of magnetic-field-induced dose effects. In the present study, the authors sought to identify a beam energy and magnetic field strength combination suitable for preclinical murine experiments. METHODS: Magnetic field dose effects were simulated in a mouse lung phantom using various beam energies (225 kVp, 350 kVp, 662 keV [Cs-137], 2 MV, and 1.25 MeV [Co-60]) and magnetic field strengths (0.75, 1.5, and 3 T). The resulting dose distributions were compared with those in a simulated human lung phantom irradiated with a 6 or 8 MV beam and orthogonal 1.5 T magnetic field. RESULTS: In the human lung phantom, the authors observed a dose increase of 45% and 54% at the soft-tissue-to-lung interface and a dose decrease of 41% and 48% at the lung-to-soft-tissue interface for the 6 and 8 MV beams, respectively. In the mouse simulations, the magnetic fields had no measurable effect on the 225 or 350 kVp dose distribution. The dose increases with the Cs-137 beam for the 0.75, 1.5, and 3 T magnetic fields were 9%, 29%, and 42%, respectively. The dose decreases were 9%, 21%, and 37%. For the 2 MV beam, the dose increases were 16%, 33%, and 31% and the dose decreases were 9%, 19%, and 30%. For the Co-60 beam, the dose increases were 19%, 54%, and 44%, and the dose decreases were 19%, 42%, and 40%. CONCLUSIONS: The magnetic field dose effects in the mouse phantom using a Cs-137, 3 T combination or a Co-60, 1.5 or 3 T combination most closely resemble those in simulated human treatments with a 6 MV, 1.5 T MRI-Linac. The effects with a Co-60, 1.5 T combination most closely resemble those in simulated human treatments with an 8 MV, 1.5 T MRI-Linac.


Subject(s)
Magnetic Fields , Monte Carlo Method , Radiation Dosage , Animals , Humans , Lung/radiation effects , Mice , Phantoms, Imaging
11.
Antimicrob Agents Chemother ; 59(9): 5611-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26124171

ABSTRACT

Antimicrobial peripherally inserted central catheters (PICCs) might reduce the incidence of central line-associated bloodstream infections (CLABSI). We tested the biocompatibility of a novel gendine-coated (combination of chlorhexidine [CHX] and gentian violet [GV]) PICC in a rabbit intravascular model and tested antimicrobial efficacy in comparison with commercially available minocycline/rifampin (M/R)- and CHX-treated PICCs in an in vitro biofilm colonization model. Gendine-coated and uncoated control PICCs were inserted in the jugular veins of rabbits for 4 days. Histopathological analysis was performed at the end of the 4-day period, and circulating levels of CHX and GV in the blood were measured at different time points using liquid chromatography-mass spectrometry. The antimicrobial efficacy of the PICCs was tested following simulated intravascular indwells of 24 h and 1 week against clinical isolates of methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Enterobacter cloacae, Candida albicans, and Candida glabrata. Rabbits implanted with gendine-coated PICCs exhibited reduced levels of thrombosis and inflammation compared to those of the rabbits with uncoated controls. No GV was detected in blood samples over the entire study period, and trace concentrations of CHX were detected. The gendine-coated PICCs completely prevented the adherence of all pathogens from 24 h to 1 week (P ≤ 0.001), while M/R-treated, CHX-treated, and control PICCs did not. Gendine-coated PICCs were highly effective in preventing biofilm formation of multidrug-resistant pathogenic bacteria and fungi. Gendine-coated PICCs were biocompatible in an intravascular setting. Further, the pharmacokinetic testing established that acute systemic exposures of CHX and GV from the gendine-coated catheters were well within safe levels.


Subject(s)
Anti-Infective Agents/pharmacology , Catheters, Indwelling/microbiology , Acinetobacter baumannii/drug effects , Animals , Anti-Infective Agents/adverse effects , Biofilms/drug effects , Candida albicans/drug effects , Candida glabrata/drug effects , Enterobacter cloacae/drug effects , Female , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Minocycline/adverse effects , Minocycline/pharmacology , Pseudomonas aeruginosa/drug effects , Rabbits , Rifampin/adverse effects , Rifampin/pharmacology , Vancomycin-Resistant Enterococci/drug effects
12.
Med Dosim ; 40(1): 70-5, 2015.
Article in English | MEDLINE | ID: mdl-25434808

ABSTRACT

This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle(3), version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4Gy to organs at risk (OARs) were calculated and compared. The lifetime risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03Gy), bone (8.11Gy), heart (2.11Gy), spinal cord (6.45Gy), and whole lung (5.66Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.


Subject(s)
Neoplasms, Radiation-Induced/epidemiology , Radiotherapy Planning, Computer-Assisted/statistics & numerical data , Radiotherapy, Intensity-Modulated/statistics & numerical data , Spinal Neoplasms/epidemiology , Spinal Neoplasms/radiotherapy , Adult , Aged , Causality , Humans , Incidence , Neoplasms, Radiation-Induced/etiology , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Risk Assessment , Young Adult
13.
J Immunol ; 193(9): 4654-62, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25238756

ABSTRACT

Transcriptional mechanisms governing hematopoietic stem cell (HSC) quiescence, self-renewal, and differentiation are not fully understood. Sequence-specific ssDNA-binding protein 2 (SSBP2) is a candidate acute myelogenous leukemia (AML) suppressor gene located at chromosome 5q14. SSBP2 binds the transcriptional adaptor protein Lim domain-binding protein 1 (LDB1) and enhances LDB1 stability to regulate gene expression. Notably, Ldb1 is essential for HSC specification during early development and maintenance in adults. We previously reported shortened lifespan and greater susceptibility to B cell lymphomas and carcinomas in Ssbp2(-/-) mice. However, whether Ssbp2 plays a regulatory role in normal HSC function and leukemogenesis is unknown. In this study, we provide several lines of evidence to demonstrate a requirement for Ssbp2 in the function and transcriptional program of hematopoietic stem and progenitor cells (HSPCs) in vivo. We found that hematopoietic tissues were hypoplastic in Ssbp2(-/-) mice, and the frequency of lymphoid-primed multipotent progenitor cells in bone marrow was reduced. Other significant features of these mice were delayed recovery from 5-fluorouracil treatment and diminished multilineage reconstitution in lethally irradiated bone marrow recipients. Dramatic reduction of Notch1 transcripts and increased expression of transcripts encoding the transcription factor E2a and its downstream target Cdkn1a also distinguished Ssbp2(-/-) HSPCs from wild-type HSPCs. Finally, a tendency toward coordinated expression of SSBP2 and the AML suppressor NOTCH1 in a subset of the Cancer Genome Atlas AML cases suggested a role for SSBP2 in AML pathogenesis. Collectively, our results uncovered a critical regulatory function for SSBP2 in HSPC gene expression and function.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Stress, Physiological , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow Transplantation , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Gene Expression , Hematopoiesis/genetics , Homeostasis/genetics , Immunophenotyping , Mice , Mice, Knockout , Phenotype , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
14.
Med Dosim ; 36(2): 200-5, 2011.
Article in English | MEDLINE | ID: mdl-20537886

ABSTRACT

We have developed a novel MRI marker for prostate brachytherapy. The purpose of this study was to evaluate the changes in anisotropy when cobalt chloride complex contrast agent encapsulated contrast agent markers (C4-ECAM) were placed adjacent to an iodine-125 (I-125) titanium seed, and to verify that the C4-ECAMs were visible on magnetic resonance imaging (MRI) after radiation exposure. Two C4-ECAMs were verified to be MRI visible in a phantom before radiation exposure. The C4-ECAMs were then attached to each end of a 12.7-U (10-mCi) I-125 titanium seed in a polymer tube. Anisotropy was measured and analyzed with the seed alone and with attached C4-ECAMs by suspending thermoluminescent dosimeters in a water phantom in 2 circles surrounding the radioactive source with radius of 1 or 2 cm. A T1-weighted MRI evaluation of C4-ECAMs was then performed after exposure to the amount of radiation typically delivered during 1 month of prostate brachytherapy. Measured values of the anisotropy function F(r, θ) for the I-125 seed with and without the C4-ECAMs were mutually statistically indistinguishable (standard error of the mean <4.2%) and agreed well with published TG-43 values for the bare seed. As expected, the anisotropy function ϕ(an)(r) for the 2 datasets (with and without C4-ECAMs) derived from the measured F(r, θ) did not exhibit statistically measurable difference. Both datasets showed agreement with the published TG-43 ϕ(an)(r) for the bare seed. The C4-ECAMs were well visualized by MRI after 1 month of radiation exposure. There were no changes in anisotropy when the C4-ECAMs were placed next to an I-125 radioactive seed, and the C4-ECAMs were visualized after radiation exposure.


Subject(s)
Brachytherapy/methods , Cobalt , Iodine Radioisotopes/therapeutic use , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Anisotropy , Contrast Media , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Male , Phantoms, Imaging , Radiopharmaceuticals
15.
Med Phys ; 37(10): 5541-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21089789

ABSTRACT

PURPOSE: As the practice of using high-energy photon beams to create therapeutic radiation fields of subcentimeter dimensions (as in intensity-modulated radiotherapy or stereotactic radiosurgery) grows, so too does the need for accurate verification of beam output at these small fields in which standard practices of dose verification break down. This study investigates small-field output factors measured using a small plastic scintillation detector (PSD), as well as a 0.01 cm3 ionization chamber. Specifically, output factors were measured with both detectors using small fields that were defined by either the X-Y collimator jaws or the multileaf collimator (MLC). METHODS: A PSD of 0.5 mm diameter and 2 mm length was irradiated with 6 and 18 MV linac beams. The PSD was positioned vertically at a source-to-axis distance of 100 cm, at 10 cm depth in a water phantom, and irradiated with fields ranging in size from 0.5 x 0.5 to 10 x 10 cm2. The field sizes were defined either by the collimator jaws alone or by a MLC alone. The MLC fields were constructed in two ways: with the closed leaves (i.e., those leaves that were not opened to define the square field) meeting at either the field center line or at a 4 cm offset from the center line. Scintillation light was recorded using a CCD camera and an estimation of error in the median-filtered signals was made using the bootstrapping technique. Measurements were made using a CC01 ionization chamber under conditions identical to those used for the PSD. RESULTS: Output factors measured by the PSD showed close agreement with those measured using the ionization chamber for field sizes of 2.0 x 2.0 cm2 and above. At smaller field sizes, the PSD obtained output factors as much as 15% higher than those found using the ionization chamber by 0.6 x 0.6 cm2 jaw-defined fields. Output factors measured with no offset of the closed MLC leaves were as much as 20% higher than those measured using a 4 cm leaf offset. CONCLUSIONS: The authors' results suggest that PSDs provide a useful and possibly superior alternative to existing dosimetry systems for small fields, as they are inherently less susceptible to volume-averaging and perturbation effects than larger, air-filled ionization chambers. Therefore, PSDs may provide more accurate small-field output factor determination, regardless of the collimation mechanism.


Subject(s)
Radiotherapy, Conformal/instrumentation , Scintillation Counting/instrumentation , Biophysical Phenomena , Humans , Neoplasms/radiotherapy , Photons/therapeutic use , Plastics , Radiometry/instrumentation , Radiometry/statistics & numerical data , Radiotherapy Dosage , Radiotherapy, Conformal/statistics & numerical data , Scintillation Counting/statistics & numerical data
16.
J Leukoc Biol ; 88(5): 849-61, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20628068

ABSTRACT

DCs play critical roles in promotion of autoimmunity or immune tolerance as potent APCs. In our anti-GBM GN model, WKY rats develop severe T cell-mediated glomerular inflammation followed by fibrosis. A DC-like cell population (CD8αα(+)CD11c(+)MHC-II(+)ED1(-)) was identified in the inflamed glomeruli. Chimera experiments demonstrated that the CD8αα(+) cells were derived from BM. The CD8αα(+) cells infiltrated glomeruli at a late stage (Days 28-35), coincident with a rapid decline in glomerular inflammation before fibrosis. The CD8αα(+) cells isolated from inflamed glomeruli were able to migrate rapidly from the bloodstream into inflamed glomeruli but not into normal glomeruli, suggesting that the migration was triggered by local inflammation. Despite high-level expression of surface and cellular MHC class II molecules, in vitro experiments showed that this CD8αα(+) DC-like cell induced apoptosis but not proliferation in antigen-specific CD4(+) T cells from T cell lines or freshly isolated from lymph nodes; they were not able to do so in the absence of antigens, suggesting induction of apoptosis was antigen-specific. Furthermore, apoptotic T cells were detected in a large number in the glomeruli at Day 32, coincident with the infiltration of the cells into glomeruli, suggesting that the cells may also induce T cell apoptosis in vivo. A potential role of this CD8αα(+) DC-like population in peripheral immune tolerance and/or termination of autoimmune inflammation was discussed.


Subject(s)
Bone Marrow Cells/immunology , CD8 Antigens/analysis , Dendritic Cells/immunology , Inflammation/immunology , T-Lymphocytes/immunology , Animals , Apoptosis/immunology , CD11 Antigens/isolation & purification , CD8 Antigens/isolation & purification , Cell Death , Cell Line , Cell Survival , Female , Kidney Glomerulus/immunology , Lymphocytes/immunology , Rats , Rats, Wistar , T-Lymphocytes/cytology
17.
Med Phys ; 36(11): 5261-91, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19994536

ABSTRACT

The concept of in-air output ratio (Sc) was introduced to characterize how the incident photon fluence per monitor unit (or unit time for a Co-60 unit) varies with collimator settings. However, there has been much confusion regarding the measurement technique to be used that has prevented the accurate and consistent determination of Sc. The main thrust of the report is to devise a theoretical and measurement formalism that ensures interinstitutional consistency of Sc. The in-air output ratio, Sc, is defined as the ratio of primary collision water kerma in free-space, Kp, per monitor unit between an arbitrary collimator setting and the reference collimator setting at the same location. Miniphantoms with sufficient lateral and longitudinal thicknesses to eliminate electron contamination and maintain transient electron equilibrium are recommended for the measurement of Sc. The authors present a correction formalism to extrapolate the correct Sc from the measured values using high-Z miniphantom. Miniphantoms made of high-Z material are used to measure Sc for small fields (e.g., IMRT or stereotactic radiosurgery). This report presents a review of the components of Sc, including headscatter, source-obscuring, and monitor-backscattering effects. A review of calculation methods (Monte Carlo and empirical) used to calculate Sc for arbitrary shaped fields is presented. The authors discussed the use of Sc in photon dose calculation algorithms, in particular, monitor unit calculation. Finally, a summary of Sc data (from RPC and other institutions) is included for QA purposes.


Subject(s)
Air , Photons/therapeutic use , Radiotherapy/methods , Absorption , Algorithms , Models, Theoretical , Monte Carlo Method , Phantoms, Imaging , Quality Control , Radiotherapy/instrumentation , Radiotherapy/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/standards , Reference Standards , Scattering, Radiation , Water
18.
Int J Radiat Oncol Biol Phys ; 69(5): 1572-8, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18035213

ABSTRACT

PURPOSE: The Radiation Therapy Oncology Group (RTOG) protocol 95-17 was a Phase I/II trial to evaluate multicatheter brachytherapy as the sole method of adjuvant breast radiotherapy for Stage I/II breast carcinoma after breast-conserving surgery. Low- or high-dose-rate sources were allowed. Dose prescription and treatment evaluation were based on recommendations in the International Commission on Radiation Units and Measurements (ICRU), Report 58 and included the parameters mean central dose (MCD), average peripheral dose, dose homogeneity index (DHI), and the dimensions of the low- and high-dose regions. METHODS AND MATERIALS: Three levels of quality assurance were implemented: (1) credentialing of institutions was required before entering patients into the study; (2) rapid review of each treatment plan was conducted before treatment; and (3) retrospective review was performed by the Radiological Physics Center in conjunction with the study chairman and RTOG dosimetry staff. RESULTS: Credentialing focused on the accuracy of dose calculation algorithm and compliance with protocol guidelines. Rapid review was designed to identify and correct deviations from the protocol before treatment. The retrospective review involved recalculation of dosimetry parameters and review of dose distributions to evaluate the treatment. Specifying both central and peripheral doses resulted in uniform dose distributions, with a mean dose homogeneity index of 0.83 +/- 0.06. CONCLUSIONS: Vigorous quality assurance resulted in a high-quality study with few deviations; only 4 of 100 patients were judged as representing minor variations from protocol, and no patient was judged as representing major deviation. This study should be considered a model for quality assurance of future trials.


Subject(s)
Brachytherapy/methods , Breast Neoplasms/radiotherapy , Iridium Radioisotopes/therapeutic use , Benchmarking , Brachytherapy/instrumentation , Brachytherapy/standards , Breast Neoplasms/surgery , Credentialing , Feasibility Studies , Female , Humans , Mastectomy, Segmental , Radiotherapy Dosage , Radiotherapy, Adjuvant/methods , Reproducibility of Results , Retrospective Studies
19.
Med Phys ; 33(6): 1818-28, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16872089

ABSTRACT

In 1999, the AAPM introduced a reference dosimetry protocol, known as TG51, based on an absorbed dose standard. This replaced the previous protocol, known as TG21, which was based on an air kerma standard. A significant body of literature has emerged discussing the improved accuracy and robustness of the absorbed dose standard, and quantifying the changes in baseline dosimetry with the introduction of the absorbed dose protocol. A significant component playing a role in the overall accuracy of beam output determination is the variability due to the use of different dosimeters. This issue, not adequately addressed in the past, is the focus of the present study. This work provides a comparison of absorbed dose determinations using 21 different makes and models of ion chambers for low- and high-energy photon and electron beams. The study included 13 models of cylindrical ion chambers and eight models of plane-parallel chambers. A high degree of precision (<0.25%) resulted from measurements with all chambers in a single setting, a sufficient number of repeat readings, and the use of high quality ion chambers as external monitors. Cylindrical chambers in photon beams show an improvement in chamber-to-chamber consistency with TG51. For electron dosimetry with plane-parallel chambers, the parameters Ngas and the product ND,w x k(ecal) were each determined in two ways, based on (i) an ADCL calibration, and (ii) a cross comparison with an ADCL-calibrated cylindrical chamber in a high-energy electron beam. Plane-parallel chamber results, therefore, are presented for both methods of chamber calibration. Our electron results with technique (i) show that plane-parallel chambers, as a group, overestimate the beam output relative to cylindrical chambers by 1%-2% with either protocol. Technique (ii), by definition, normalizes the plane-parallel results to the cylindrical results. In all cases, the maximum spread in output from the various cylindrical chambers is <2% implying a standard deviation of less than 0.5%. For plane-parallel chambers, the maximum spread is somewhat larger, up to 3%. A few chambers have been identified as outliers.

SELECTION OF CITATIONS
SEARCH DETAIL
...