Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Res Notes ; 14(1): 290, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34315525

ABSTRACT

OBJECTIVES: Pistacia genus belongs to the flowering plants in the cashew family and contains at least 11 species. The whole-genome resequencing data of different species from Pistacia genus are described herein. The data reported here will be useful for better understand the adaptive evolution, demographic history, genetic diversity, population structure, and domestication of pistachio. DATA DESCRIPTION: Genomic DNA was isolated from fresh leaves and used to construct libraries with insert size of 350 bp. Sequence libraries were made and sequenced on the Illumina Hiseq 4000 platform to produce 150 bp paired-end reads. A total number of 4,851,118,730 billion reads (ranging from 33,305,900 to 34,990,618 reads per sample) were created across all samples. We produced a total of 727.67 Gbp data which have been deposited in the Genome Sequence Archive (GSA) database with the Accession of CRA000978. All of the data are also available as the sequence read archive (SRA) format in the National Center for Biotechnology Information (NCBI) with identifier of SRP189222, mirroring our deposited data in GSA.


Subject(s)
Pistacia , Genome , High-Throughput Nucleotide Sequencing , Pistacia/genetics
3.
Genome Biol ; 20(1): 79, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30999938

ABSTRACT

BACKGROUND: Pistachio (Pistacia vera), one of the most important commercial nut crops worldwide, is highly adaptable to abiotic stresses and is tolerant to drought and salt stresses. RESULTS: Here, we provide a draft de novo genome of pistachio as well as large-scale genome resequencing. Comparative genomic analyses reveal stress adaptation of pistachio is likely attributable to the expanded cytochrome P450 and chitinase gene families. Particularly, a comparative transcriptomic analysis shows that the jasmonic acid (JA) biosynthetic pathway plays an important role in salt tolerance in pistachio. Moreover, we resequence 93 cultivars and 14 wild P. vera genomes and 35 closely related wild Pistacia genomes, to provide insights into population structure, genetic diversity, and domestication. We find that frequent genetic admixture occurred among the different wild Pistacia species. Comparative population genomic analyses reveal that pistachio was domesticated about 8000 years ago and suggest that key genes for domestication related to tree and seed size experienced artificial selection. CONCLUSIONS: Our study provides insight into genetic underpinning of local adaptation and domestication of pistachio. The Pistacia genome sequences should facilitate future studies to understand the genetic basis of agronomically and environmentally related traits of desert crops.


Subject(s)
Adaptation, Biological , Domestication , Evolution, Molecular , Genome, Plant , Pistacia/genetics , Multigene Family , Salt Tolerance/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL