Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 186: 117173, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906519

ABSTRACT

Postmenopausal osteoporosis, marked by estrogen deficiency, is a major contributor to osteoporotic fractures, yet early prediction of fractures in this population remains challenging. Our goal was to explore the temporal changes in bone-specific inflammation, oxidative stress, bone turnover, and bone-matrix water, and their relationship with estrogen deficiency-induced modifications in bone structure and mechanical properties. Additionally, we sought to determine if emerging clinically translatable imaging techniques could capture early bone modifications prior to standard clinical imaging. Two-month-old female Sprague Dawley rats (n = 48) underwent ovariectomy (OVX, n = 24) or sham operations (n = 24). A subgroup of n = 8 rats per group was sacrificed at 2-, 5-, and 10-weeks post-surgery to assess the temporal relationships of inflammation, oxidative stress, bone turnover, bone matrix water, mechanics, and imaging outcomes. OVX rats exhibited higher body weight compared to sham rats at all time points. By 5-weeks, OVX animals showed elevated markers of inflammation and oxidative stress in cortical bone, which persisted throughout the study, while cortical bone formation rate did not differ from sham until 10-weeks. DXA outcomes did not reveal differences between OVX and sham at any time point. Bound water, assessed using ultrashort echo time magnetic resonance imaging (UTE MRI), was lower in OVX at the earliest time point (2-weeks) and reduced again at 10-weeks with no difference at 5-weeks. These data demonstrate that bound water assessment using novel UTE MRI technology was lower at the earliest time point following OVX. However, no temporal relationship with bone turnover, inflammation, or oxidative stress was observed at the time points assessed in this study. These findings underscore both the increased need to understand bone hydration changes and highlight the usefulness of UTE MRI for non-invasive bone hydration measurements.


Subject(s)
Bone Matrix , Bone Remodeling , Estrogens , Ovariectomy , Oxidative Stress , Rats, Sprague-Dawley , Animals , Female , Bone Remodeling/physiology , Estrogens/deficiency , Estrogens/metabolism , Bone Matrix/metabolism , Water/metabolism , Rats , Inflammation/pathology , Inflammation/metabolism , Biomechanical Phenomena , X-Ray Microtomography
2.
Calcif Tissue Int ; 115(2): 174-184, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856730

ABSTRACT

Patients with chronic kidney disease (CKD) report high pain levels, but reduced renal clearance eliminates many analgesic options; therefore, 30-50% of CKD patients have chronic opioid prescriptions. Opioid use in CKD is associated with higher fracture rates. Opioids may directly alter bone turnover directly through effects on bone cells and indirectly via increasing inflammation. We hypothesized that continuous opioid exposure would exacerbate the high bone turnover state of CKD and be associated with elevated measures of inflammation. Male C57Bl/6J mice after 8 weeks of adenine-induced CKD (AD) and non-AD controls (CON) had 14-day osmotic pumps (0.25-µL/hr release) containing either saline or 50-mg/mL oxycodone (OXY) surgically implanted in the subscapular region. After 2 weeks, all AD mice had elevated blood urea nitrogen, parathyroid hormone, and serum markers of bone turnover compared to controls with no effect of OXY. Immunohistochemical staining of the distal femur showed increased numbers of osteocytes positive for the mu opioid and for toll-like receptor 4 (TLR4) due to OXY. Osteocyte protein expression of tumor necrosis factor-α (TNF-α) and RANKL were higher due to both AD and OXY so that AD + OXY mice had the highest values. Trabecular osteoclast-covered surfaces were also significantly higher due to both AD and OXY, resulting in AD + OXY mice having 4.5-fold higher osteoclast-covered surfaces than untreated CON. These data demonstrate that opioids are associated with a pro-inflammatory state in osteocytes which increases the pro-resorptive state of CKD.


Subject(s)
Adenine , Analgesics, Opioid , Disease Models, Animal , Mice, Inbred C57BL , Osteoclasts , Renal Insufficiency, Chronic , Animals , Adenine/pharmacology , Adenine/adverse effects , Male , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Analgesics, Opioid/adverse effects , Mice , Inflammation , Bone Remodeling/drug effects , Oxycodone/pharmacology , Bone and Bones/metabolism , Bone and Bones/drug effects
3.
Bone Rep ; 21: 101761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646090

ABSTRACT

Spinal cord injury (SCI) leads to significant sublesional bone loss and high fracture rates. While loss of mechanical loading plays a significant role in SCI-induced bone loss, animal studies have demonstrated mechanical loading alone does not fully account for loss of bone following SCI. Indeed, we have shown that bone loss occurs below the level of an incomplete moderate contusion SCI, despite the resumption of weight-bearing and stepping. As systemic factors could also impact bone after SCI, bone alterations may also be present in bone sites above the level of injury. To examine this, we assessed bone microarchitecture and bone turnover in the supralesional humerus in male and female rats at two different ages following a moderate contusion injury in both sub-chronic (30 days) and chronic (180 days) time points after injury. At the 30-day timepoint, we found that both young and adult male SCI rats had decrements in trabecular bone volume at the supralesional proximal humerus (PH), while female SCI rats were not different from age-matched shams. At the 180-day timepoint, there were no statistical differences between SCI and sham groups, irrespective of age or sex, at the supralesional proximal humerus. At the 30-day timepoint, all SCI rats had lower BFR and higher osteoclast-covered trabecular surfaces in the proximal humerus compared to age-matched sham groups generally matching the pattern of SCI-induced changes in bone turnover seen in the sublesional proximal tibia. However, at the 180-day timepoint, only male SCI rats had lower BFR at the supralesional proximal humerus while female SCI rats had higher or no different BFR than their age-matched counterparts. Overall, this preclinical study demonstrates that a moderate contusion SCI leads to alterations in bone turnover above the level of injury within 30-days of injury; however male SCI rats maintained lower BFR in the supralesional humerus into long-term recovery. These data further highlight that bone loss after SCI is not driven solely by disuse. Additionally, these data allude to potential systemic factors exerting influence on bone following SCI and highlight the need to consider treatments for SCI-induced bone loss that impact both sublesional and systemic factors.

SELECTION OF CITATIONS
SEARCH DETAIL